

Middle East Technical University

Informatics Institute

JAMMER DETECTION IN AUTONOMOUS
VEHICLES WITH MACHINE LEARNING

Advisor Name: Prof. Dr. Tuğba TAŞKAYA TEMİZEL

(METU)

Student Name: Erdoğan Mert DEMİRYÜREK

(IS)

January 2025

Orta Doğu Teknik Üniversitesi

Enformatik Enstitüsü

MAKİNE ÖĞRENİMİ İLE OTONOM ARAÇLARDA
JAMMER TESPİTİ

Danışman Adı: Prof. Dr. Tuğba TAŞKAYA TEMİZEL

(ODTÜ)

Öğrenci Adı: Erdoğan Mert DEMİRYÜREK

(BS)

Ocak 2025

REPORT DOCUMENTATION PAGE

1. AGENCY USE ONLY (Internal Use) 2. REPORT DATE

10.01.2025

3. TITLE AND SUBTITLE

JAMMER DETECTION IN AUTONOMOUS VEHICLES WITH MACHINE LEARNING

4. AUTHOR (S)

 Erdoğan Mert DEMİRYÜREK

5. REPORT NUMBER (Internal Use)

6. SPONSORING/ MONITORING AGENCY NAME(S) AND SIGNATURE(S)

7. SUPPLEMENTARY NOTES

8. ABSTRACT (MAXIMUM 200 WORDS)

Wireless communication systems of autonomous vehicles may be vulnerable to threats such as jammer
attacks. As a result of these attacks, operational failures and security problems may occur. This study aims
to classify which jammer attacking scenario occurs, using machine learning in order to select the necessary
precaution to be taken against jammer attacks. A simulated dataset consisting of parameters such as RSSI,
SNR, PDR and estimated relative speed was used in the study. KNN, Random Forest and XGBoost models
were used for jammer detection and their performances were compared. The results showed that all of the
models, KNN, Random Forest, and XGBoost models has similar accuracy results which is above 90%.
The results show that accurate detection of jammer attacks can be achieved with the machine learning
algorithms

9. SUBJECT TERMS 10. NUMBER OF PAGES

74

 i

TABLE OF CONTENTS

LIST OF TABLES .. ii

LIST OF FIGURES ... iii

CHAPTER 1 INTRODUCTION ... 1

CHAPTER 2 LITERATURE REVIEW ... 3

CHAPTER 3 RESEARCH METHODOLOGY ... 7

CHAPTER 4 RESULTS ... 28

CHAPTER 5 CONCLUSION .. 36

REFERENCES ... 37

APPENDIX A CONFUSION MATRICES .. 40

APPENDIX B WEIGHTS & BIASES ... 51

 ii

LIST OF TABLES
Table 1 Train and Test Set size for Dataset 1 ... 19
Table 2 Train and Test Set size for Dataset 2 ... 20
Table 3 Train Set size for Dataset 1 and Test Set size for Dataset 2 .. 20
Table 4 Model Combinations ... 25
Table 5 Hyperparameters .. 26
Table 6 Accuracy Results of Each Model .. 29
Table 7 Performance Metrics of KNN Train: 15 m/s Test 15 m/s, No VRS, No Normalization
 .. 30
Table 8 Performance Metrics of KNN Train: 15 m/s Test 15 m/s, VRS, No Normalization ... 30
Table 9 Performance Metrics of KNN Train: 15 m/s Test 25 m/s, No VRS, No Normalization
 .. 30
Table 10 Performance Metrics of KNN Train: 15 m/s Test 25 m/s, VRS, No Normalization . 30
Table 11 Performance Metrics of KNN Train: 25 m/s Test 25 m/s, No VRS, No Normalization
 .. 31
Table 12 Performance Metrics of KNN Train: 25 m/s Test 25 m/s, VRS, No Normalization . 31
Table 13 Performance Metrics of RF Train: 15 m/s Test 15 m/s, No VRS, No Normalization 31
Table 14 Performance Metrics of RF Train: 15 m/s Test 15 m/s, VRS, No Normalization 31
Table 15 Performance Metrics of RF Train: 15 m/s Test 25 m/s, No VRS, No Normalization 31
Table 16 Performance Metrics of RF Train: 15 m/s Test 25 m/s, VRS, No Normalization 32
Table 17 Performance Metrics of RF Train: 25 m/s Test 25 m/s, No VRS, No Normalization 32
Table 18 Performance Metrics of RF Train: 25 m/s Test 25 m/s, VRS, No Normalization 32
Table 19 Performance Metrics of RF Train: 15 m/s Test 15 m/s, No VRS, Normalization 32
Table 20 Performance Metrics of RF Train: 15 m/s Test 15 m/s, VRS, Normalization 32
Table 21 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, No VRS, No
Normalization ... 33
Table 22 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, VRS, No
Normalization ... 33
Table 23 Performance Metrics of XGBoost Train: 15 m/s Test 25 m/s, No VRS, No
Normalization ... 33
Table 24 Performance Metrics of XGBoost Train: 15 m/s Test 25 m/s, VRS, No
Normalization ... 33
Table 25 Performance Metrics of XGBoost Train: 25 m/s Test 25 m/s, No VRS, No
Normalization ... 33
Table 26 Performance Metrics of XGBoost Train: 25 m/s Test 25 m/s, VRS, No
Normalization ... 34
Table 27 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, No VRS,
Normalization ... 34
Table 28 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, VRS, Normalization . 34
Table 29 Feature Importances .. 35

 iii

LIST OF FIGURES
Figure 1 Example Circuit Diagram for Receiver (Takahashi et al., 2007) 8
Figure 2 Simulation Setup (Kosmanos et al., 2019) .. 9
Figure 3 Histogram Plots of Dataset 1 ... 10
Figure 4 QQ Plots of Dataset 1 .. 10
Figure 5 SNR and PDR Distribution According to the Scenario of Dataset 1 12
Figure 6 Pearson Correlation Matrix of Dataset 1 ... 13
Figure 7 Histogram Plots of Dataset 2 ... 14
Figure 8 QQ Plots of Dataset 2 .. 15
Figure 9 SNR and PDR Distribution According to the Scenario of Dataset 2 16
Figure 10 Pearson Correlation Matrix of Dataset 2 ... 17
Figure 11 3D Scatters of Train and Test Set Obtained from Dataset 1 18
Figure 12 3D Scatters of Train and Test Set Obtained from Dataset 2 19
Figure 13 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-2, No VRS 40
Figure 14 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-2, VRS 40
Figure 15 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-1, No VRS 41
Figure 16 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-1, VRS 41
Figure 17 Confusion Matrix: KNN, Train: Dataset-1, Test: Dataset-1, No VRS 42
Figure 18 Confusion Matrix: KNN, Train: Dataset-1, Test: Dataset-1, VRS 42
Figure 19 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, No VRS 43
Figure 20 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, VRS 43
Figure 21 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-1, No VRS 44
Figure 22 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-1, VRS 44
Figure 23 Confusion Matrix: RF, Train: Dataset-1, Test: Dataset-1, No VRS 45
Figure 24 Confusion Matrix: RF, Train: Dataset-1, Test: Dataset-1, VRS 45
Figure 25 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization 46
Figure 26 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, VRS, Normalization 46
Figure 27 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS 47
Figure 28 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS 47
Figure 29 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-1, No VRS 48
Figure 30 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-1, VRS 48
Figure 31 Confusion Matrix: XGBoost, Train: Dataset-1, Test: Dataset-1, No VRS 49
Figure 32 Confusion Matrix: XGBoost, Train: Dataset-1, Test: Dataset-1, VRS 49
Figure 33 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS,
Normalization ... 50
Figure 34 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS, Normalization
 .. 50
Figure 35 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-2, No VRS 51
Figure 36 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-2 VRS 52
Figure 37 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-1, No VRS 53
Figure 38 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-1, VRS 54
Figure 39 Hyperparameter Graph: KNN, Train: Dataset-1, Test: Dataset-1, No VRS 55
Figure 40 Hyperparameter Graph: KNN, Train: Dataset-1, Test: Dataset-1, VRS 56
Figure 41 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, No VRS 57
Figure 42 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, VRS 58
Figure 43 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-1, No VRS 59
Figure 44 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-1, VRS 60
Figure 45 Hyperparameter Graph: RF, Train: Dataset-1, Test: Dataset-1, No VRS 61
Figure 46 Hyperparameter Graph: RF, Train: Dataset-1, Test: Dataset-1, VRS 62

 iv

Figure 47 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, No VRS,
Normalization 63
Figure 48 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, VRS,
Normalization 64
Figure 49 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS 65
Figure 50 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS 66
Figure 51 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-1, No VRS 67
Figure 52 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-1, VRS 68
Figure 53 Hyperparameter Graph: XGBoost, Train: Dataset-1, Test: Dataset-1, No VRS 69
Figure 54 Hyperparameter Graph: XGBoost, Train: Dataset-1, Test: Dataset-1, VRS 70
Figure 55 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS,
Normalization 71
Figure 56 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS,
Normalization 72

 1

CHAPTER 1 INTRODUCTION

Autonomous vehicles are a technology that meets today's needs in road transportation
and ushers in a new era in transportation. These vehicles share data with other autonomous
vehicles in real time, process this data and make navigation decisions and ensure passenger
safety with this method. Continuing uninterrupted communication is very important for
autonomous vehicles to ensure operational success.

As with every wireless communication system, there are also weaknesses in the
communication analysis found in autonomous vehicles. They aim to improve the success of
jammers by attacking autonomous operating systems. By intervening in this capability
environment, they ensure that the communication signal belonging to the autonomous vehicle
is disrupted. As a result of the disrupted signal, the autonomous vehicle cannot receive data and
cannot receive information from other vehicles. Such attacks, through failures or delays,
demonstrate the integrity and durability of an AV system or cause a worse accident. That shows
the urgent need to develop some efficient mechanisms for detecting such threats and acting
accordingly.

Under these conditions, the knowledge of whether the situation is normal or jammed is
important for communication systems because the countermeasure mechanisms change
according to this decision. Misclassification can lead to overreaction due to non-malicious
conditions or underreaction due to the presence of real threats. The work presented here aims
to predict the attack scenarios of jammers using machine learning algorithms.

These jammer attacks severely disrupt AV systems by disrupting key communication
metrics such as signal reliability, latency, and packet delivery. Traditional methods for detecting
anomalies in wireless networks rely on fixed thresholds or rule-based systems that cannot adapt
to dynamic and diverse operational conditions. Since AVs operate in an ever-changing
environment, solutions must be more flexible and intelligent.

Jammer attacks can occur in different ways and different precautions should be taken
against each scenario. The most popular of these are the Reactive Attack and Constant Attack
scenarios. In the Reactive Attack scenario, the jammer does not attack until it receives the
broadcast sent by the autonomous vehicle or gets close enough to the autonomous vehicle and
starts the attack when it reaches the autonomous vehicle. This type of attack is difficult to detect
because there is no jamming broadcast in the environment until the target autonomous vehicle
is attacked, and the attack starts when the autonomous vehicle becomes vulnerable. In the
Constant Attack scenario, there is a jammer in the environment, and it regularly pollutes the
communication channel. While it can be detected more easily than in the Reactive Attack
scenario, it seriously reduces the operational success of autonomous vehicles. In addition to
jammer scenarios, communication systems may experience packet loss due to signal reflections
and fading that may occur even if there is no jammer in the environment. It is also very
important to distinguish this situation from jammer scenarios in terms of taking
countermeasures.

The countermeasure to be applied is selected as a result of the classification of the
jammer attack scenario. If there is no jammer in the environment and packet loss or noise is
encountered, the waveform's durability can be increased by switching to modulations with
lower coding rates. In the Reactive Attack scenario, frequency hopping mode can be switched
to and regular communication can be provided from the nearby jammer at a different frequency.

 2

In the Constant Jammer scenario, since there is a fixed broadcast in the environment,
communication can be continued at a fixed frequency other than the currently used frequency
and the output power can be increased.

Machine learning has emerged as one of the approaches that can be used to overcome
the classification of jammer scenarios by recognizing patterns. Machine learning models can
analyze key features such as received signal level, signal-to-noise ratio, and packet throughput
to classify scenarios and predict potential jammer attacks. Unlike static methods, ML models
learn from the data itself, and their performance improves over time and in various contexts.
Since different jammer scenarios such as No Attack, Reactive Attack, or Constant Attack
require different countermeasures, machine learning can be used to reliably classify these
scenarios to secure an AV communication system.

This study explores how the machine learning algorithms, including K-Nearest
Neighbors (KNN), Random Forest (RF), and XGBoost, can be used for jammer detection in
AV systems.

Developing different machine learning models to classify the jammer attacking
scenarios, comparing the performances of each model, identifying key input features like RSSI,
SNR, PDR and Variation in Relative Speed are the objectives of this study.

 3

CHAPTER 2 LITERATURE REVIEW

There have been studies on machine learning in many different areas in RF
communication systems. In this Literature Review section, a brief summary of machine learning
or deep learning studies used in RF communication systems is given.

The study of Jaganattah et al. (2019b) used machine learning algorithms for optimizing
the wireless communication system for Internet of Things. The aim of the study is that
optimizing spectrum sharing, medium access control, and routing protocols with machine
learning models to improve overall communication efficiency in wireless networks. Using
machine learning models is a good choice because traditional methods may be insufficient
under variable environmental conditions and may consume more energy in calculations
compared to machine learning models. The dataset used in the work includes signal
characteristics and network parameters. The inputs of the model are network traffic data and
signal characteristics. The proposed model predicts improvements in spectrum utilization and
energy efficiency. Thus, it is aimed to increase the efficiency in both physical, network and
application layers in terms of the use of machine learning in wireless communication systems.
As a result of this study, it has been shown that the problem can be approached with different
methods from supervised learning models to deep learning models in areas such as improving
spectrum efficiency, optimizing routing and increasing energy efficiency under different
environmental conditions of wireless communication systems. (Jagannath et al., 2019b)

The study of Erpek et al. (2019) is about deep learning techniques applied to wireless
communication systems in various study areas. The main purpose of the study is detecting
signals, sensing spectrum, and modulation classification to improve the performance, safety
and efficiency of the wireless communication systems. The dataset includes wireless
communication signals from both simulated signals and real-world communication systems.
The model is trained with the I/Q signal data, which is a digitalized signal, and the model
classifies the signal type, channel state information, and jamming. The study uses deep neural
networks and convolutional neural networks, for classification tasks and monitoring model’s
performances with accuracy and mean squared error. The key findings of the study show that
deep learning models performed better than traditional signal processing methods, especially
when there is noise and interference in the environment. This study is presented as a guide for
future research. As a result, the study shows that deep learning can be used in many areas such
as jammer classification, signal classification and channel status in wireless communication
systems and that the models used increase the resistance of communication systems against
jamming attacks, close security gaps and increase their performance. (Erpek et al., 2019)

The study of Sun et al. (2019) provides a review of machine learning techniques applied
to wireless networks, such as resource management, networking, mobility management, and
localization. The study has discussed in detail the problems and open issues that will be
encountered with the use of supervised, unsupervised, and reinforcement learning models from
the network layer to the physical layer and even to the application layer of wireless
communication systems. As a result of this study, it has been shown that machine learning can
be used in many areas such as spectrum management, beamforming, power management,
indoor positioning, network traffic prediction. In addition, it has been presented that there are
no standardized datasets for the difficulties encountered in using machine learning in wireless
communication systems, that more work needs to be done on network slicing, and that models
should be trained by combining data collected from different layers. (Sun et al., 2019)

 4

In the study of Zhou et al. (2021), the use of machine learning algorithms to optimize
advanced 5G wireless systems, focusing on tasks such as adaptive modulation selection,
channel equalization, channel coding, beamforming, load prediction, and trajectory prediction
is examined. The main purpose of the study is showing the effects of machine learning on
network efficiency, performance, QoS, resource management and energy consumption. In this
study, performance metrics for different tasks are given as follows, accuracy for the load
prediction, error correction for channel coding, and resource allocation efficiency for
beamforming. As a result of this study, it has been presented that the use of machine learning
in 5G wireless systems has many benefits, but it can be difficult due to long training times and
variable conditions. The study suggests using of distributed machine learning in future studies.
(Zhou et al., 2021)

The study of Ahmad and Agarwal (2024) presents the implementation of a machine
learning algorithm for a Multiple-Input-Single-Output system using software-defined radios. It
focuses on signal detection in MISO wireless communication systems without knowing the
channel state in the transmitter side. Model is trained with the RF signals and predicting
transmitted symbols. The dataset comprises combinations of signal and noise under different
fading, noise, and channel distortions. The machine learning approach is outperformed
traditional signal processing methods like maximum ratio transmission by improving the BER,
energy consumption and the performance with a 10 dB gain. This study presents a method that
increases system efficiency by eliminating the need to know the channel state on the transmitter
side using machine learning. (Ahmad & Agarwal, 2024)

In the study of Pan et al. (2018), supervised machine learning algorithms were used to
improve the performance of radar systems under complex electromagnetic environment. The
inputs to the model are the number of reference and guard cells in the constant false alarm rate
detection process, jamming signal power, and the frequency modulation index of noise. The
output is radar range estimation performance, which is compared with RMSE. Linear
Regression, KNN, Support Vector Machine, Random Forest, Gradient Boosting, and Multilayer
Perceptron models are trained on 90 experimental samples generated using uniform design
methodology to predict radar performance. The analysis is conducted in scenarios involving
jamming and noise, with features of both the radar and electromagnetic interference considered.
MLP outperformed other models used in the study by RMSE (1.77) metric. As a result of this
study, it has been shown that radar performance can be successfully estimated with MLP
without the need for large amounts of data. (Pan et al., 2018)

The study of McCaskey et al. (2018) explores the use of neural networks to model and
optimize node-to-node RF communication channels. In this framework, the inputs and outputs
represent transmitted and received bits, while the auto-encoder's middle layer simulates a phase-
modulated RF signal. The aim of the model is to minimize BER under AWGN channel. The
key finding of the study is that the auto-encoder can effectively learn modulation schemes in
noisy environments. The auto-encoder shows better performance in simulations, particularly
when trained on noisy data. This study shows that although the traditional BPSK modulation
provides better results than the presented auto-encode modulation in the experiments, the
presented methodology can be used with future improvements. (McCaskey et al., 2018)

The study conducted by Younes et al. (2023) presents machine learning algorithms to
predict the frequency of the laser in an Orthogonal Frequency Division Multiplexing-Free
Space Optics (OFDM-FSO) system under varying weather conditions. The dataset used in the
study was collected with the Optisystem v.15 software, a simulation tool used for optical
communication systems such as fiber optics, freespace optics and photonics, developed by

 5

OptiWave (OptiWave, 2025). The dataset includes distance between the optic communication
systems and climatic conditions such as fog, rain, and clear conditions, with wavelengths of
1550nm, 1250nm, and 850nm. For longer wavelengths (lower frequency), the atmospheric
losses are lower, and the longer distances can be obtained with the laser. Random Forest and
Linear Regression are trained to predict the best wavelengths based on weather conditions. The
models take attenuation values as input under different weather conditions, while the output
focuses on distance achieved by each wavelength. Random forest is outperformed Linear
Regression by accuracy in this study. This study shows the use of machine learning to optimize
FSO communication systems by selecting wavelengths based on climatic conditions. (Younes
et al., 2023)

The study of Menu et al. (2023), presents machine learning algorithms with a MIMO
indoor visible light communication system to improve the reliability of data transmission. In
the optical communication systems, a combination of LEDs is used for transmission the light
like the transmitter antenna in the RF communication systems. Photodiodes are used as the
receiver antenna like in the RF communication systems. The study applies Random Forest,
Decision Tree, and Support Vector Machine algorithms to classify and predict transmitted
messages. Performance metrics indicate that both Decision Tree and Support Vector Machine
achieved 100% accuracy, while Random Forest achieved 97.4% accuracy. The study shows
that machine learning algorithms can be used for classifying and predicting the transmitted
messages in VLC with very high accuracy. (Menu et al., 2023)

The study of (Aghabeiki et al., 2021), introduces a machine learning methodlogy to
spectrum sensing for software-defined radio. Machine learning algorithms are used to detect
signals with low level SNR in cognitive radio networks. The study compares four machine
learning algorithms: Naïve Bayes, Support Vector Machine, Gradient Boosting Machine, and
Distributed Random Forest. The dataset includes signal characteristics received under different
noise levels, and the models are trained to classify signals. Principal component analysis is done
to reduce dataset dimensionality. Performance of the models are compared by using ROC
curves. Naïve Bayes and SVM models are the best performed models according to the research
for both simulation and real-world tests, especially for low SNR conditions. This study has
shown that machine learning models, especially NB and SVM, are effective and achieve high
success rates in the field of spectrum sensing. (Aghabeiki et al., 2021)

The study of Valieva et al. (2019), compares machine learning algorithms for classifying
modulation types of a radio frequency communication system. The dataset consists of I/Q data
and SNR values simulated various SNR conditions ranging from 1 to 30 dB by using Simulink
model with AWGN for a software defined radio. Twenty-three supervised ML algorithms are
compared in this study. Since the study will be used for real-time cognitive radio applications
performance metrics are accuracy and prediction speed. The best accuracy is obtained with Fine
Gaussian SVM achieved but it was too slow for real-time use. Decision Trees and Ensemble
Boosted Trees models can be used for real time applications because their accuracy is high
enough and they are fast. This study has shown that the modulation type of signals with high
SNR values can be predicted with a high success rate (97% accuracy at SNR levels above 27
dB) using machine learning models (Valieva et al., 2019).

The study of Senthilkumar et al. (2022), compares two machine learning algorithms
(Multilayer Perceptron and Random Forest) to predict frequency bands and path loss in wireless
communication systems. The study focuses on frequency bands used in 5G and will be used in
future networks, aiming to improve the base station’s spectrum allocation and path loss
prediction. The dataset includes channel state information and environmental parameters.

 6

Regression models were used to predict path loss and suitable frequency bands across a
spectrum ranging from 1 to 100 GHz. The model’s performance is evaluated with metrics; mean
absolute error, mean squared error, and R-squared. The Random Forest model achieved nearly
90% accuracy in frequency band prediction and an R-squared of 89% in path loss prediction.
Results shows that combining supervised and unsupervised learning methods significantly
improves prediction accuracy for higher frequency bands. In addition, it has been presented that
when Random Forest and PCA are used together, high success is achieved in path loss and
frequency band estimation in 5G wireless communication systems and Random Forest can be
used for future studies (Senthilkumar et al., 2022).

The study of Al-Amodi et al. (2022) is about machine learning based Convolutional
Neural Networks, to estimate and predict parameters of the channel for underwater
communication systems. The underwater channel is different from the free space and the
frequency of underwater communication systems uses lower frequency bands, but the attribute
of the signal is very likely to the wireless radio frequency communication systems. The study
presents challenges due to signal attenuation caused by absorption and scattering. The model is
trained to estimate temperature gradients and air bubble levels, both of which impact channel
performance. The CNN architecture is trained to estimate the channel parameters based on
received signal data and signal samples. The dataset is both collected from real world
applications and simulated data. The CNN's performance metrics are mean squared error and
normalized MSE. The results shows that the CNN can predicts channel parameters with a good
performance. (Al-Amodi et al., 2022)

 7

CHAPTER 3 RESEARCH METHODOLOGY

According to the literature review, machine learning and deep learning can be used in
many different areas of RF Communication. In this study, the classification of jammer attacks
against RF Communication systems used in autonomous vehicles will be provided with
machine learning. For this reason, a total of 3 different machine learning models were trained
with different combinations of two datasets and their performances were compared. This
chapter explains how the study was done.

Dataset Description

The dataset used in this study is the dataset used in a study previously conducted by Kosmanos
et al. (Kosmanos et al., 2019). The dataset is available via IEEE Dataport. The dataset used in
this study was created to classify jamming methods used to prevent the operation of autonomous
vehicles using machine learning. The dataset was divided into two by estimating the speed of
the jammer relative to the autonomous vehicle, which was estimated from the I/Q Data analyzed
at the physical level of the signal. One dataset was prepared with a maximum estimated relative
speed of 15 m/s and the other dataset was prepared with an estimated relative speed of 25 m/s.
The dataset includes Time, RSSI, SNR, PDR, Speed, Relative Speed and Scenario parameters.

• Time: The time stamp of the measurements taken by the autonomous vehicle.
• Received Signal Strength Indicator (RSSI): The parameter that shows the received

signal level in dBm scale.
• Signal to Noise Ratio (SNR): The ratio of the received signal to the noise level.
• Package Delivery Ratio (PDR): A parameter that shows what percentage of packets

sent by another vehicle were successfully received at the application level.
• Speed: The speed of the autonomous vehicle in m/s at the time of measurement.
• Relative Speed: The speed difference between the jammer and the autonomous vehicle

in m/s.
• Scenario: The type of attacks made by the jammer.

RSSI is the parameter that expresses the power level perceived by the receiver of a signal
sent by a transmitter in wireless communication systems. Since RSSI is a power level, it is
expressed in dBm, relative to a reference power of 1 milliwatt (mW).

SNR is the ratio of the received signal level to the ambient noise in wireless communication
systems. It is generally expressed in dB. It is a parameter frequently used to understand the
signal quality and whether there is any multipath or jammer in the environment. However, SNR
alone is not enough to make an inference about why the noise floor is increasing.

PDR is a parameter that shows what percentage of the packet from the transmitter side can
be decoded on the receiver side in wireless communication systems. It is controlled at the upper
level of communication systems. It is inversely proportional to the packet error rate.

Speed indicates the speed of the autonomous vehicle. The speed of the vehicle at the time
the measurement is taken is recorded.

Relative Speed is an estimated parameter. It is the difference in speed between the jammer
and the autonomous vehicle. This estimation is estimated using I/Q Data, which is the output
of the Analog to Digital Converter circuit used in the physical level resolution of the signal. An
example block diagram for Receiver Circuit is given at Figure 1 (Takahashi et al., 2007). It can

 8

be explained as the main signal received from the antenna is multiplied with a Local Oscillator
and the frequency of the signal is down converted to Intermediate Frequency. The reason behind
the multiplying operation, the ADC has a sampling capacity, therefore when the signal is
digitalized with a higher frequency, there can be some data loss, therefore its frequency is down
converted initially. After that operation signal is digitalized, and I/Q data can be read by the
FPGA or processor for further calculations. In our case it is used for both decoding the packages
and estimating the Relative Speed of the Jammer. However, this parameter has already been
estimated in the dataset used in this study. While doing this, the maximum estimated relative
speed was determined as 15 and 25 m/s and 2 datasets were simulated accordingly.

Figure 1 Example Circuit Diagram for Receiver (Takahashi et al., 2007)

The scenarios in the dataset are classified into three types: No Attack, Reactive Attack and
Constant Attack. “No Attack” is the scenario where there is no jammer exists in the
environment, only the negative effects of multipath on communication, which occurs in areas
where the signal reflection is high, such as in urban areas. In the “Reactive Attack” scenario,
there is a jammer in the environment, but the jammer does not attack the target vehicle before
approaching it but starts the jamming process when it is near the vehicle. Finally, in the
“Constant Attack” scenario, there is a jammer in the environment, and it attacks continuously.

In creating the dataset, 1000 measurements were taken in a simulation environment in
accordance with the IEEE 802.11p standard for each scenario. The effects of environmental
factors such as signal attenuation and interference were included using the Rician fading model.
Each scenario has specific parameters designed to evaluate the attack style and effect of a
jammer. In particular, the inclusion of the relative speed metric contributes to distinguishing
between interference and jamming cases for classification.

Data Simulation

 The dataset used in this study was simulated for use in another study conducted by
Kosmanos et al. The simulation environment, which can be seen from Figure 2, is designed to
model autonomous vehicle communication scenarios and the effects of jammer attacks on these
scenarios. The simulation operates in an urban topology with one transmitter and one receiver.
In order to simulate realistic channel conditions, a Rician fading model is used, which includes
on-line and off-line signal paths caused by reflections. This simulation model combines free
space loss, Rayleigh effects and Doppler frequency shift to accurately reflect signal distortions
caused by the movement of the autonomous vehicle and objects in the environment that may
cause reflections. For the simulation to be adapted to real life, basic parameters such as output
power, frequency and Doppler shifts are set in accordance with IEEE 802.11p standards.
(Kosmanos et al., 2019)

 9

Figure 2 Simulation Setup (Kosmanos et al., 2019)

The study is taken with three different jamming scenarios. In the No Attack scenario, since
there is no jammer in the network, only reflections, Doppler shift and free space loss are
intended to be included. The Reactive Attack scenario refers to a situation where the jammer
changes its output power and timing to avoid detection. In the Constant Attack scenario, the
jammer continuously sends a polluting signal at maximum power, causing serious
communication disruptions.

Exploratory Data Analysis

Exploratory Data Analysis (EDA) is applied to detect the distributions of the data in the
dataset, the relationships between the parameters and the outliers. During EDA, it is also
checked whether there is missing or misleading data in the dataset. If there is missing data,
additions are made according to the type or cyclicality of the data. However, there is no need
for any additional steps because no missing data is in the dataset used in this study.

EDA is a couple of analyses such that correlation analysis, visualization and distribution
of the data, to determine the relations between the features in the dataset. Visualization methods
such as histograms, scatter plots, QQ plots, and heatmaps are very useful to understand the
distributions in the data and the correlations between the variables. Exploratory data analysis is
very important step in the training processes of the models, aiming to understand, organize and
clean the data to increase the performance of the model.

The histogram plots of the first dataset, the maximum relative speed estimated at 25 m/s,
is given in Figure 3. When the histogram plots are examined, it can be seen that the samples are
taken at regular intervals and the SNR, Speed, PDR and Relative Speed metrics are generally
concentrated in the region. Apart from this, RSSI is concentrated in only one region. The
scenarios are numbered 1, 2, 3 respectively as No Attack, Reactive Attack and Constant Attack.

 QQ Plots of the first dataset can be seen from Figure 4, since Scenario is a categorical
variable, it’s not shown on the QQ Plots. It can be understood from QQ Plots that the variables

 10

used in the study are far from normal distribution. Detailed explanations of the plots are given
below.

Figure 3 Histogram Plots of Dataset 1

Figure 4 QQ Plots of Dataset 1

 11

• Time:

The time parameter is distributed regularly. From here, it is seen that measurements are
taken at regular intervals and recorded in the dataset.

• SNR:

The SNR variable is generally distributed between -30 dB and 20 dB. As the SNR level
decreases, the possibility of an interference or jammer in the environment increases because the
noise in the environment will increase in both conditions. For this reason, when the SNR value
is below zero, it can be said that the environment is dirty in terms of RF signal. In general, the
SNR values that can be measured in a communication system are also like this.

• Speed:

The speed variable of the autonomous vehicle generally varies between 22 and 25 m/s. This
parameter also shows that it is simulated with a fixed speed in the simulation environment.

• RSSI:

RSSI is concentrated between -70 dBm and -50 dBm. When free space loss is taken into
account, the signal levels obtained here make sense. Since the main factor affecting RSSI is the
distance between two autonomous vehicles, RSSI of two vehicles may vary depending on the
distance.

• PDR:

The PDR graph shows that the values are distributed between 0 and 1. A value of 1 indicates
that no packet loss is encountered, while 0 indicates that all packets are lost. The high number
of 0 values in the dataset indicates that the RF pollution in the environment affects the
waveforms of the communication systems and that the packets cannot be recovered.

• Relative Speed:

The relative speed is distributed between 0 and 25, but there is more concentration at the
values of 0 and 25 m/s. Since the maximum estimated relative speed parameter in this dataset
is 25 m/s, a maximum of 25 m/s is also seen in the visuals.

• Scenario:

It is seen that the scenarios are distributed uniformly. As stated in the simulation, 1000
samples were taken for each scenario.

After examining the histogram and QQ Plots, in order to check whether there is a jammer
attack in regions with low packet success rate and low SNR, and whether there is no jammer
attack in regions with high SNR and high packet success rate, the SNR and PDR distributions
were checked according to the scenarios given in Figure 5. It was seen from the visuals that
there is a similar distribution with minor differences in each scenario.

 12

Figure 5 SNR and PDR Distribution According to the Scenario of Dataset 1

The correlation matrix, which can be seen from Figure 6, was used to analyze the
relationships between the parameters in the dataset. There is a negative correlation (-0.85)
between Time and Speed, and in the simulation conducted considering this information, we can
see that the speed of the autonomous vehicle decreases as time progresses. Although not as
strong as Speed and Time, there is also a negative correlation (-0.47) between Time and Relative
Speed. From here, we can see that the relative speed between the autonomous vehicle and the
jammer decreases as time progresses and is simulated.

There is a positive correlation (0.62) between SNR and PDR. This is expected because
the signal received by the communication system approaches the noise even more at low SNR
values and even remains below the noise at negative SNR values. For this reason, packet loss
is expected as the signal deteriorates. Similarly, there is a similar correlation (0.68) between
RSSI and PDR. As the signal level decreases, the signal approaches the noise floor and the
probability of the system making an error increase.

 13

Figure 6 Pearson Correlation Matrix of Dataset 1

The histogram plots of the second dataset, the maximum relative speed estimated at 15
m/s, is given in

 14

Figure 7. QQ Plots of the first dataset can be seen from Figure 8. There is not a
significant difference between the first and the second dataset. The only difference is speed and
relative speed because this simulation is done for 15 m/s.

Figure 7 Histogram Plots of Dataset 2

 15

Figure 8 QQ Plots of Dataset 2

After examining the histogram and QQ Plots, in order to check whether there is a jammer
attack in regions with low packet success rate and low SNR, and whether there is no jammer
attack in regions with high SNR and high packet success rate, the SNR and PDR distributions
were checked according to the scenarios given in Figure 9. It was seen from the visuals that
there is a similar distribution with minor differences in each scenario for the second dataset.

 16

Figure 9 SNR and PDR Distribution According to the Scenario of Dataset 2

The correlation matrix, which can be seen from
Figure 10. In this Pearson Correlation Matrix, it is seen that the correlation between

speed and relative speed is lower over time compared to the first dataset. As in the first dataset,
there is a positive relationship between SNR and PDR and RSSI and PDR. In this dataset, unlike
the first dataset, there is a strong negative relationship between Scenario and RSSI and Scenario
and PDR. From this situation, it is understood that there is usually no jammer when high RSSI
and high packet performance ratio are obtained.

 17

Figure 10 Pearson Correlation Matrix of Dataset 2

Data Preprocessing

In the data preprocessing process, two data sets containing 15 m/s and 25 m/s relative
speeds were studied. In order to increase the performance of the model, a parameter was derived
that shows whether there is any change in the relative speed. The VRS metric used in the study
conducted by Kosmanos et al. is a metric that controls the change in the relative speed of the
jammer with the autonomous vehicle. In each measurement taken, the previous and next
Relative Speed values are compared, and it is determined whether there is a change. If there is
a change, the VRS parameter is set to 1, if there is no change, the VRS parameter is set to 0.
The algorithm processes each measurement in order and returns the VRS result of each
measurement as a list. (Kosmanos et al., 2019). It is evaluated that the VRS parameter will play
an important role in the estimation of the No Attack scenario in the modeling process.

When separating the data set into training and test data, care was taken to ensure that
both sets were uniform. A balanced separation of the training and test sets ensured that different
speeds and scenario conditions were sufficiently represented in both sets. As a result of the
splitting process, 30% of the data set was separated as training and 70% as test data. This ratio
was chosen to prevent the model from memorizing or overfitting. For all the KNN models,
models are trained with a normalized data by Standard Scaler. Because RSSI and SNR values
are high integer values compared to VRS and PDR parameters, they affect the performance of
models based on distance calculation such as KNN. However, since decision tree-based
machine learning algorithms such as Random Forest and XGBoost do not calculate distance,
there is no need to normalize the data. For these two models, an experiment was conducted to
check whether there was a change in performance when data is normalized. Therefore, Standard
Scaler was not used in all Random Forest and XGBoost models.

 18

A third test and train set were created to see what the performance of the model would
be when trained for one relative speed and tested with data from another relative speed. In this
case, the train set was set to 15 m/s and the test set was set to 25 m/s.

The 3D scatters of train and test set obtained from the first dataset (25 m/s) can be seen

from
Figure 11. 3D When 3D scatters are examined, the RSSI, SNR and VRS distributions

in 3D space are shown in the first row. It is seen that in the scenario where there is no jammer
in the environment, the VRS metric is always 0, and if there is a jammer in the environment, it
is always 1. When there is a jammer, more complex analyses should be performed to classify
the attacking scenario from RSSI and SNR. In the plots in the second row, the RSSI, SNR and
PDR distributions in 3D space can be seen. It is seen that the distributions of the data for each
scenario are intertwined and cannot be easily classified.

Figure 11 3D Scatters of Train and Test Set Obtained from Dataset 1

The uniform distribution of the test and train set according to the scenario can be seen
from Table 1.

 19

Table 1 Train and Test Set size for Dataset 1

Scenario Train Size Test Size
1 300 700
2 300 700
3 300 700

The 3D scatters of original train and test set obtained from the second dataset (15 m/s)

can be seen from
Figure 12. When the plots are examined, it is seen that the distribution of the second

dataset in 3D space is similar to the first dataset and there is no major difference between the
distributions of the datasets.

Figure 12 3D Scatters of Train and Test Set Obtained from Dataset 2

The uniform distribution of the test and train according to the scenario set can be seen
from Table 2.

 20

Table 2 Train and Test Set size for Dataset 2

Scenario Train Size Test Size
1 300 700
2 300 700
3 300 700

The uniform distribution of the train set obtained from the second dataset and test set
obtained from first dataset can be seen from Table 3.

Table 3 Train Set size for Dataset 1 and Test Set size for Dataset 2

Scenario Train Size Test Size
1 1000 1000
2 1000 1000
3 1000 1000

Models

The models used in this study are the KNN, Random Forest and XGBoost models described
below.

• K-Nearest Neighbors (KNN)

The foundations of the KNN algorithm were laid in a study conducted by Evelyn Fix
and Joseph Hodges (Fix & Hodges, 1989). In addition to this study, Thomas Cover expanded
the work of Fix and Hodges with his Nearest Neighbor Pattern Classification study (Cover &
Hart, 1967). KNN is a supervised machine learning algorithm which is used for both regression
and classification tasks. Unlike decision trees and random forests which are model based
learning methods, KNN is lazy or instance-based learning algorithm. In instance-based
learning, there is no build explicit model from the training data, it stores the training dataset and
based on that dataset predictions are made with the unseen data by comparing to its nearest
training examples in the space. So, computation is halted until it needs to make predictions (lazy
learning) and it uses entire dataset for the predictions (instance-based learning). Also, KNN
does not make any assumption about the underlying data distribution.

KNN in classification process is like the following:

• Distance Calculations: In this phase, the distance between unseen data point
and every point in the dataset is calculated.

• Find Nearest Neighbors: Based on the chosen metric which refers to K,
identifying the K closest neighbors to that of unseen datapoint. In this phase,
distance metric decision is very important.

• Voting: Class of the unseen data point is determined by majority voting by
investigating the K nearest neighbors.

KNN in regression process is like the following:

• Distance Calculations: In this phase, the distance between unseen data point
and every point in the dataset is calculated.

 21

• Find Nearest Neighbors: Based on the chosen metric which refers to K,
identifying the K closest neighbors to that of unseen datapoint. In this phase,
distance metric decision is very important.

• Prediction: Prediction of the unseen data point calculated using target values of
the K nearest neighbors. Usually average of the items are taken.

The most important thing in KNN is the distance metrics. Usually following three
distance metrics are used:

• Eucledian Distance: Euclidean distance between two points in Euclidean
space is the length of the line segment between them. This is also referred as L2
norm. It is the shortest distance to go from one point to another. This tends to
penalize heavier on larger differences. This distance metric is very sensitive to
outliers. The formula is as follows:

𝑑(𝑥, 𝑦) = ()(𝑥! − 𝑦!)"
#

!$%

• Manhattan Distance: Manhattan distance (L1 Norm) is the sum of the
magnitudes of the vectors in a space. It is the most natural way of measure
distance between vectors, that is the sum of absolute difference of the
components of the vectors. In this norm, all the components of the vector are
weighted equally. This metric is less sensitive to outliers.

𝒅(𝒙, 𝒚) =)|𝑥! − 𝑦!|
𝒏

𝒊$𝟏

• Cosine Similarity: This metric measures the similarity between two vectors of
an inner product space. This metric is less sensitive to magnitude differences
between features.

𝒄𝒐𝒔(𝜽) =
𝑨.𝑩

‖𝑨‖‖𝑩‖ =
∑ 𝑨𝒊𝑩𝒊𝑵
İ$𝟏

8∑ 𝑨𝒊𝟐𝒏
𝒊$𝟏 8∑ 𝑩𝒊𝟐𝒏

𝒊$𝟏

 Hyperparameter tuning is important when developing machine learning models to
investigate the best parameter combination. Generally, following hyperparameters are tuned
while developing KNN:

1. Number of Neighbors
• K is the most important hyperparameter.
• If K is too large, distance is calculated with too many points which are far

away from each other which causes other classes to play role. This causes
model to become too smooth and possibly underfit the data.

• If K is too small, the model become too sensitive to outliers and noise. Model
has a risk to overfit.

 22

2. Distance Metric
• Euclidean distance is the most common choice for continuous numerical

data.
• Decision is based on domain knowledge.

3. Weighting Scheme
• Uniform weighting: Each of the K values affect the calculations equally to

the final prediction.
• Distance-weighted: Closest neighbors have a higher weight than the far

neighbors.
4. Neighbor search algorithm

• Brute Force: This computes the distance to all points in the training set.
• Tree Based: If dataset is too large, it can speed up neighbor searches.

• Random Forest

 Random Forest is a Decision Tree based classification and regression algorithm which
is introduced by Leo Breiman (Breiman, 2001). It consists of multiple decision trees at training
time and outputs either the mode of classes for classification or the mean prediction for
regression. It uses bagging method which is an ensemble method which combines multiple
learners to produce the final learned model. These learners are weak learners and used as a base
estimator. For each tree random forests use random subset of the data also called as bootstrap
samples for each bagging. By introducing randomness, trees become uncorrelated which
reduces the variance the final prediction.

 To understand random forest better, decision trees must be investigated first. Decision
tree composes of internal nodes which is also called as decision points and leaf nodes which is
also called as final predictions. At each node, decision tree algorithm selects a feature and a
threshold which separates the data with homogenous labels best in classification tasks. For
regression tasks, values are splitted rather than categories. For loss function, Gini impurity or
entropy is used for classification and mean squared error tried to minimize for regression. A
stopping criterion must be set to avoid tree to keep growing and possibly overfit. A single
decision tree has a severe risk to overfit that is why random forests are introduced by averaging
across many decision trees to stabilize the final prediction.

 Random forests work by combining the bagging with random forest selection.

1. Bagging (Bootstrap Sampling):
• For each tree, training set sampling is done with replacement from the

original dataset. This means some instances will appear multiple times in
tree’s training subset where as some will not appear at all.

2. Random Feature Selection:
• When splitting a node in the tree, random forest considers only the subset of

the features rather than selecting all the features.
• With this feature decorrelates the trees because each tree sees different subset

of features at each split.
3. Tree Construction:

• Each tree is grown to a large depth. The randomness introduced helps reduce
the risk of overfitting that would otherwise happen with a single deep tree.

 23

4. Prediction Combination:
• Each tree votes for a class. The final class is based on majority vote across

all trees.
• The final prediction value is the average of each tree numeric prediction.

Hyperparameter tuning is important when developing machine learning models to investigate
the best parameter combination. Generally, following hyperparameters are tuned while
developing Random Forests:

1. Number of trees:
• This parameter controls the number of trees
• More trees generally improve performance however training time is

increased.
• Larger values can stabilize the predictions.

2. Max Features:
• For classification tasks, default is the square root of the total number of

features.
• For regression tasks common default option is total number of features

divided by 3.
• It controls how random each tree’s split is.

3. Max depth:
• It controls how deep each tree can grow.
• To capture more complex dependencies, deeper trees must be used but there

is a risk of overfitting.
4. Min Samples Split:

• This is the minimum number of samples required to split an internal node.
• This parameter prevents trees from becoming to deep and overfit.
• Larger values prevent make the trees less prone to overfitting.

5. Min Samples Leaf:
• This is the minimum number of samples in a leaf node.
• This ensures each leaf has at least a certain number of samples.

6. Bootstrap:
• This parameter decides whether to use bootstrap or not. If set to false, the

entire dataset is used for each tree.
7. Criterion:

• This is for criterion metric. For classification, gini impurity or entropy is
used. For regression, mean squared error or mean absolute error is used.

Random forests provide high accuracy and robustness and can handle large feature spaces.
It also prevents overfitting. However, they are less interpretable and has computational and
memory cost.

• XGBoost

 Extreme Gradient Boosting is a frequently used and effective machine learning
algorithm for classification presented by Tianqi Chen (Chen & Guestrin, 2016). XGBoost is a
gradient boosting algorithm designed for speed and performance. The main idea is as follows:

• Start with simple model. This can be like a constant value.

 24

• Compute the gradients. For classification tasks, make the calculations using the
gradient of the loss function with respect to the predictions. For regression tasks,
residual is the difference between the current prediction and the target.

• Based on the gradients, train a new model
• Add the new model to the ensemble with a certain weight and learning rate.
• Repeat the process until the stopping criteria is reached.

XGBoost uses second order derivative of the loss function instead of just first order
gradients to provide more accurate approximations. It includes L1 and L2 regularization to
reduce overfitting in the trees. By this way, it encourages smaller simpler trees. It uses a concept
called “gain” to measure how good a split is.

Hyperparameter tuning is important when developing machine learning models to
investigate the best parameter combination. Generally, following hyperparameters are tuned
while developing XGBoost:

1. Number of estimators:
• Number of trees used in the algorithm.
• More trees can improve performance however this leads to overfitting.

2. Learning rate:
• Determines the contribution of each tree by a factor. Generally, between 0

and 1.
• Smaller learning rates requires more trees but can lead to better

generalization.
3. Max depth:

• Maximum depth of each tree.
4. Subsample:

• Fraction of training samples used to grow each tree.
• A value smaller than 1 act like bagging.

5. Subsample ratio of columns:
• Fraction of features used in each tree or at each split.
• It is like random forest feature subsampling.

In order to examine their performance under different datasets, the models were trained
with the train and test set combinations given in Table 4.

 25

Table 4 Model Combinations

Models Source of Train Set Source of Test Set Standard Scaler VRS

KNN

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes Yes

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes Yes

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes No

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes Yes

Random Forest

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No Yes

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes Yes

XGBoost

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No Yes

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes No

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes Yes

 26

Hyperparameter Tuning

Hyperparameter tuning process was performed to optimize model performance. In this
process, it was aimed to obtain the best performance by trying various hyperparameter
combinations for different models. The tuned hyperparameters can be seen from Table 5. For
cross validation, "GridSearchCV" function was used within the scope of hyperparameter
tuning. In this way, cross validation sets were created at a ratio of 4 to 1 from the given
hyperparameter set and the best hyperparameter set was selected according to the average
metrics for hyperparameters. Jammer attacking scenarios were predicted over the test set with
the selected parameter set.

Weights & Biases is an online tool used to track and manage the outputs of many
functions such as hyperparameter tuning and tracking performance metrics in the
implementation of machine learning algorithms. It enables visualization to better understand
the impact of metrics, so that the performance metrics, hyperparameters and model conditions
can be easily followed by the user (Guides, n.d.). Weights & Biases integration to the
implementation of the study is done. With this integration, effects of hyperparameter tuning can
be seen online. The results of hyperparameter tuning can be seen at Appendix B.

Table 5 Hyperparameters

Model Hyperparameter Values

KNN
Number of Neighbors 1,2,3,…,50
Weights 'uniform', 'distance’
Metric ‘euclidean', 'manhattan', 'minkowski'

Random Forest

Number of Estimators 10, 20,30,…,200
Max Depth 5,10,15,20
Minimum Samples Split 2, 5, 10
Minimum Samples Leaf 1, 2, 4
Bootstrap True, False

XGBoost

Number of Estimators 50,100,150,200,250
Max Depth 3, 5, 7, 9
Learning Rate 0.01, 0.05, 0.1, 0.2
Subsample 0.6, 0.8, 1.0
Subsample ratio of columns 0.6, 0.8, 1.0

Performance Metrics

To evaluate the model performance, metrics such as accuracy, precision, recall, F1-score
and support were used. Thanks to these metrics, the performance of the model under different
scenarios was observed.

• Accuracy

Accuracy is the ratio of correct predictions made to total predictions.

• Precision

Precision is the ratio of predictions that correctly labeled positively to all labeled positive
targets.

 27

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

• Recall

Recall is the ratio of predictions that correctly labeled as positive to the targets that are
positive.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

• F1 Score

F1 Score is harmonic mean of precision and recall. F1 score gives equal importance to
precision and recall.

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑟𝑒𝑐𝑎𝑙𝑙 +

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

In addition to these metrics, a confusion matrix is also extracted for the models trained
with each dataset combination. The confusion matrix visualizes the distribution of each
correctly and incorrectly classified scenario. In this matrix, the relationships between the true
classes and the predicted classes are clearly shown and it is analyzed whether the model tends
to confuse certain classes.

 28

CHAPTER 4 RESULTS

In this section, the results obtained in the study are presented in detail. This study
examines the performance of models developed with different train and test sets for the
detection and classification of jammer attacks against communication systems used in
autonomous vehicles and the effect of optimized hyperparameters. In order to evaluate the
performance of the models, primarily the Accuracy metric, as well as Precision, Recall, F1
Score and Support metrics were recorded. In addition, feature importance was checked in order
to understand which parameter had the most effect in the training of the models. Accuracy
results of the models trained in each combination are given in Table 6.

 29

Table 6 Accuracy Results of Each Model

Models Source of Train Set Source of Test Set
Standard

Scaler VRS Accuracy

KNN

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes No 0.79

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes Yes 0.81

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes No 0.62

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes Yes 0.73

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes No 0.89

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) Yes Yes 0.93

Random
Forest

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No No 0.78

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No Yes 0.82

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No 0.60

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes 0.68

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No 0.90

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes 0.95

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes No 0.78

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes Yes 0.82

XGBoost

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No No 0.78

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) No Yes 0.83

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No 0.60

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes 0.68

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No No 0.91

Dataset-1
(Rel. Speed: 25 m/s)

Dataset-1
(Rel. Speed: 25 m/s) No Yes 0.94

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes No 0.79

Dataset-2
(Rel. Speed: 15 m/s)

Dataset-2
(Rel. Speed: 15 m/s) Yes Yes 0.82

 30

When the results are examined, it is seen that KNN, Random Forest and XGBoost
models give simmilar results. When the VRS parameter is used, the accuracy is increased,
because the presence of the VRS parameter almost eliminates the incorrect No Attack
classification. While the VRS parameter is zero in the No Attack case, it is one in the Reactive
Attack or Constant Attack scenarios. For this reason, it increases the performance of the model.
When the model is trained with one dataset and tested with the other dataset, it is seen that its
performance is lower. It is seen that the reason for this is that there are only simulations made
in one way in the training dataset, and the model is not sufficient when different conditions
occur. In order to increase the performance of the model under different conditions, the model
can be trained with data created under different conditions.

The other performance metrics (Precision, Recall, F1 Score and Support) can be seen
from below section.

KNN Train: 15 m/s Test 15 m/s, No VRS, Normalization

Table 7 Performance Metrics of KNN Train: 15 m/s Test 15 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.93 0.96 0.94 700
Reactive Attack 0.70 0.70 0.70 700
Constant Attack 0.73 0.71 0.72 700

KNN Train: 15 m/s Test 15 m/s, VRS, Normalization

Table 8 Performance Metrics of KNN Train: 15 m/s Test 15 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 700
Reactive Attack 0.72 0.73 0.72 700
Constant Attack 0.73 0.71 0.72 700

KNN Train: 15 m/s Test 25 m/s, No VRS, Normalization

Table 9 Performance Metrics of KNN Train: 15 m/s Test 25 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.68 0.94 0.79 1000
Reactive Attack 0.59 0.81 0.69 1000
Constant Attack 0.41 0.10 0.16 1000

KNN Train: 15 m/s Test 25 m/s, VRS, Normalization

Table 10 Performance Metrics of KNN Train: 15 m/s Test 25 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 1000
Reactive Attack 0.57 0.84 0.68 1000
Constant Attack 0.69 0.37 0.48 1000

 31

KNN Train: 25 m/s Test 25 m/s, No VRS, Normalization

Table 11 Performance Metrics of KNN Train: 25 m/s Test 25 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.89 0.93 0.91 700
Reactive Attack 0.91 0.86 0.88 700
Constant Attack 0.86 0.87 0.87 700

KNN Train: 25 m/s Test 25 m/s, VRS, Normalization

Table 12 Performance Metrics of KNN Train: 25 m/s Test 25 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 700
Reactive Attack 0.92 0.88 0.90 700
Constant Attack 0.88 0.93 0.90 700

RF Train: 15 m/s Test 15 m/s, No VRS, No Normalization

Table 13 Performance Metrics of RF Train: 15 m/s Test 15 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.92 0.95 0.94 700
Reactive Attack 0.70 0.73 0.71 700
Constant Attack 0.72 0.67 0.70 700

RF Train: 15 m/s Test 15 m/s, VRS, No Normalization

Table 14 Performance Metrics of RF Train: 15 m/s Test 15 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 700
Reactive Attack 0.72 0.76 0.74 700
Constant Attack 0.75 0.71 0.73 700

RF Train: 15 m/s Test 25 m/s, No VRS, No Normalization

Table 15 Performance Metrics of RF Train: 15 m/s Test 25 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.72 0.94 0.81 1000
Reactive Attack 0.55 0.70 0.62 1000
Constant Attack 0.39 0.17 0.24 1000

 32

RF Train: 15 m/s Test 25 m/s, VRS, No Normalization

Table 16 Performance Metrics of RF Train: 15 m/s Test 25 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 1000
Reactive Attack 0.52 0.69 0.59 1000
Constant Attack 0.54 0.36 0.43 1000

RF Train: 25 m/s Test 25 m/s, No VRS, No Normalization

Table 17 Performance Metrics of RF Train: 25 m/s Test 25 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.91 0.93 0.92 700
Reactive Attack 0.93 0.86 0.90 700
Constant Attack 0.86 0.92 0.89 700

RF Train: 25 m/s Test 25 m/s, VRS, No Normalization

Table 18 Performance Metrics of RF Train: 25 m/s Test 25 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 700
Reactive Attack 0.95 0.89 0.92 700
Constant Attack 0.89 0.96 0.92 700

RF Train: 15 m/s Test 15 m/s, No VRS, Normalization

Table 19 Performance Metrics of RF Train: 15 m/s Test 15 m/s, No VRS, Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.92 0.96 0.94 700
Reactive Attack 0.70 0.72 0.71 700
Constant Attack 0.72 0.67 0.70 700

RF Train: 15 m/s Test 15 m/s, VRS, Normalization

Table 20 Performance Metrics of RF Train: 15 m/s Test 15 m/s, VRS, Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.00 1.00 1.00 700
Reactive Attack 0.72 0.77 0.74 700
Constant Attack 0.75 0.70 0.73 700

 33

XGBoost Train: 15 m/s Test 15 m/s, No VRS, No Normalization

Table 21 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.93 0.93 0.93 700
Reactive Attack 0.70 0.72 0.71 700
Constant Attack 0.70 0.67 0.69 700

XGBoost Train: 15 m/s Test 15 m/s, VRS, No Normalization

Table 22 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.0 1.0 1.0 700
Reactive Attack 0.73 0.76 0.74 700
Constant Attack 0.75 0.72 0.74 700

XGBoost Train: 15 m/s Test 25 m/s, No VRS, No Normalization

Table 23 Performance Metrics of XGBoost Train: 15 m/s Test 25 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.73 0.96 0.83 1000
Reactive Attack 0.53 0.67 0.59 1000
Constant Attack 0.39 0.16 0.23 1000

XGBoost Train: 15 m/s Test 25 m/s, VRS, No Normalization

Table 24 Performance Metrics of XGBoost Train: 15 m/s Test 25 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.0 1.0 1.0 1000
Reactive Attack 0.52 0.70 0.59 1000
Constant Attack 0.53 0.35 0.42 1000

XGBoost Train: 25 m/s Test 25 m/s, No VRS, No Normalization

Table 25 Performance Metrics of XGBoost Train: 25 m/s Test 25 m/s, No VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.93 0.93 0.93 700
Reactive Attack 0.95 0.88 0.91 700
Constant Attack 0.86 0.92 0.89 700

 34

XGBoost Train: 25 m/s Test 25 m/s, VRS, No Normalization

Table 26 Performance Metrics of XGBoost Train: 25 m/s Test 25 m/s, VRS, No Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.0 1.0 1.0 700
Reactive Attack 0.95 0.88 0.91 700
Constant Attack 0.89 0.96 0.92 700

XGBoost Train: 15 m/s Test 15 m/s, No VRS, Normalization

Table 27 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, No VRS, Normalization

Scenario Precision Recall F1-Score Support
No Attack 0.93 0.95 0.94 700
Reactive Attack 0.70 0.73 0.72 700
Constant Attack 0.72 0.69 0.70 700

XGBoost Train: 15 m/s Test 15 m/s, VRS, Normalization

Table 28 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, VRS, Normalization

Scenario Precision Recall F1-Score Support
No Attack 1.0 1.0 1.0 700
Reactive Attack 0.72 0.77 0.74 700
Constant Attack 0.75 0.71 0.73 700

The feature importances can be seen from Table 29. This table shows the most important
parameters that affect the performance of KNN, Random Forest and XGBoost when models
are trained with different combinations. For Random Forest and XGBoost, no normalization
was performed except for the lines containing the Normalization statement given in the table.
Since the distance calculation was performed for KNN, normalization was performed for each
training and test set combination. In general, RSSI parameter is the most important feature. If
the VRS parameter is used, the parameter that has the most effect on the model is VRS. VRS
has been the feature with the highest importance scores, especially in the XGBoost model. Since
VRS has a great effect in the No Attack scenario, this situation is expected to be encountered.
The PDR and SNR parameters are less important for overall models.

 35

Table 29 Feature Importances

Input Combination KNN (Always
Normalized) Random Forest XGBoost

Train Set: Dataset-2 (15 m/s)
Test Set: Dataset-2 (15 m/s)

RSSI: 0.322476
SNR: 0.231429
PDR: 0.229143

RSSI: 0.244000
PDR: 0.094857
SNR: 0.090095

RSSI: 17.715017
SNR: 11.674231
PDR: 5.715641

Train Set: Dataset-2 (15 m/s)
Test Set: Dataset-2 (15 m/s)
VRS

VRS: 0.348667
SNR: 0.141619
RSSI: 0.129048
PDR: 0.052000

VRS: 0.382857
RSSI: 0.108667
SNR: 0.082381
PDR: 0.074476

VRS: 23.264172
RSSI: 4.049105
SNR: 1.583684
PDR: 1.513139

Train Set: Dataset-2 (15 m/s)
Test Set: Dataset-1 (25 m/s)

PDR: 0.233333
RSSI: 0.190600
SNR: 0.052267

RSSI: 0.092067
PDR: 0.041200
SNR: -0.003400

RSSI: 2.112059
SNR: 0.651852
PDR: 0.595214

Train Set: Dataset-2 (15 m/s)
Test Set: Dataset-1 (25 m/s)
VRS

VRS: 0.286933
RSSI: 0.097333
PDR: 0.042333
SNR: 0.035800

VRS: 0.284800
RSSI: 0.018400
PDR: -0.006267
SNR: -0.042400

VRS: 402.185913
RSSI: 21.852936
PDR: 17.722486
SNR: 16.116278

Train Set: Dataset-1 (25 m/s)
Test Set: Dataset-1 (25 m/s)

RSSI: 0.498381
PDR: 0.354952
SNR: 0.273238

RSSI: 0.345143
SNR: 0.157714
PDR: 0.118095

RSSI: 1.899271
PDR: 1.107933
SNR: 0.912065

Train Set: Dataset-1 (25 m/s)
Test Set: Dataset-1 (25 m/s)
VRS

VRS: 0.411143
RSSI: 0.252857
PDR: 0.158952
SNR: 0.128190

VRS: 0.357143
RSSI: 0.253333
PDR: 0.095048
SNR: 0.080381

VRS: 22.303427
RSSI: 3.531750
SNR: 1.750347
PDR: 1.580866

Train Set: Dataset-2 (15 m/s)
Test Set: Dataset-2 (15 m/s)
Normalization

N/A
RSSI: 0.227524
SNR: 0.109143
PDR: 0.068286

RSSI: 9.579320
PDR: 3.202416
SNR: 3.181648

Train Set: Dataset-2 (15 m/s)
Test Set: Dataset-2 (15 m/s)
VRS
Normalization

N/A

VRS: 0.391143
RSSI: 0.112571
SNR: 0.112190
PDR: 0.073048

VRS: 39.290897
RSSI: 10.007263
PDR: 4.358130
SNR: 3.658278

 36

CHAPTER 5 CONCLUSION

In this study, the use of machine learning for scenario detection in jammer attacks
against communication systems used in autonomous vehicles is discussed. Since the
vulnerability created by the weak points of autonomous vehicles' wireless communication
networks can cause operational failures, an attempt has been made to classify jammer scenarios.
In this context, developing effective and fast detection methods for jammer scenarios is critical
for autonomous vehicle systems.

Jammer detection was performed using XGBoost, Random Forest and k-Nearest
Neighbors (KNN) algorithms. In the study conducted, the similar performances were obtained
with KNN, Random Forest and XGBoost models. Hyperparameter tuning was performed to
increase the performance of the models, and the most ideal parameters were determined. In
particular, all of the models provided a similar and high performance in terms of accuracy and
other performance metrics. RSSI and VRS are very important parameters in terms of the
performance of the models. The results of the project revealed that KNN, Random Forest and
XGBoost algorithms can be used for jammer detection.

As a future work, more complex relationships can be learned from signal features using
more complex deep learning models such as CNN or LSTM. In addition, models can be trained
by collecting more data, both in number and variety, from the physical level of the wireless
communication system in addition to the data in the dataset used.The developed models can be
tested in real-time scenarios and updated against new requirements.

In conclusion, this study has shown that machine learning-based approaches offer a
solution for jammer detection.

 37

REFERENCES

Jagannath, J., Polosky, N., Jagannath, A., Restuccia, F., & Melodia, T. (2019b). Machine

learning for wireless communications in the Internet of Things: A comprehensive survey. Ad

Hoc Networks, 93, 101913. https://doi.org/10.1016/j.adhoc.2019.101913

Erpek, T., O’Shea, T. J., Sagduyu, Y. E., Shi, Y., & Clancy, T. C. (2019). Deep learning for

wireless communications. In Studies in computational intelligence (pp. 223–

266). https://doi.org/10.1007/978-3-030-31764-5_9

Sun, Y., Peng, M., Zhou, Y., Huang, Y., & Mao, S. (2019). Application of Machine learning in

wireless networks: key techniques and open issues. IEEE Communications Surveys &

Tutorials, 21(4), 3072–3108. https://doi.org/10.1109/comst.2019.2924243

Zhou, Y., Chen, J., Zhang, M., Li, D., & Gao, Y. (2021). Applications of machine learning for

5G advanced wireless systems. 2022 International Wireless Communications and Mobile

Computing (IWCMC). https://doi.org/10.1109/iwcmc51323.2021.9498754

Ahmad, A., & Agarwal, S. (2024). Demonstration of Machine Learning Based Receiver for

MISO System Using Software-Defined Radios. 2024 IEEE International Conference on

Machine Learning for Communication and Networking, 1–

2. https://doi.org/10.1109/icmlcn59089.2024.10624922

Pan, Y., Zhang, J., Luo, G. Q., & Yuan, B. (2018). Evaluating Radar Performance Under

Complex Electromagnetic Environment Using Supervised Machine Learning Methods: A Case

Study. 2018 8th International Conference on Electronics Information and Emergency

Communication (ICEIEC), 206–210. https://doi.org/10.1109/iceiec.2018.8473520

McCaskey, M., Kukura, E., Corrigan, R., Bhasin, K., & Chelmins, D. (2018). Machine Learning

Applied to an RF Communication Channel. NAECON 2018 - IEEE National Aerospace and

Electronics Conference, 179–185. https://doi.org/10.1109/naecon.2018.8556708

 38

Optiwave. (2025). OptiSystem. Retrieved from https://optiwave.com, Last accessed date:

14.01.2025

Younes, R., Nassr, M., Anbar, M., Ghosna, F., Alasadi, H. a. A., & Voronkova, D. K. (2023).

Machine Learning approach for predicting suitable wavelengths in OFDM-FSO system. 2022

4th International Youth Conference on Radio Electronics, Electrical and Power Engineering

(REEPE), 1–5. https://doi.org/10.1109/reepe57272.2023.10086914

Menu, K. V., Leke, C. A., & Ndjiongue, A. R. (2023). Machine learning assisted indoor visible

light communication system. 2022 International Telecommunications Conference (ITC-Egypt),

440–445. https://doi.org/10.1109/itc-egypt58155.2023.10206067

Aghabeiki, S., Hallet, C., Noutehou, N. E., Rassem, N., Adjali, I., & Mabrouk, M. B. (2021).

Machine-learning-based spectrum sensing enhancement for software-defined radio

applications. 2021 IEEE Cognitive Communications for Aerospace Applications Workshop, 1–

6. https://doi.org/10.1109/ccaaw50069.2021.9527294

Valieva, I., Bjorkman, M., Akerberg, J., Ekstrom, M., & Voitenko, I. (2019). Multiple machine

learning algorithms comparison for modulation type classification for efficient cognitive

radio. MILCOM 2022 - 2022 IEEE Military Communications Conference (MILCOM), 318–

323. https://doi.org/10.1109/milcom47813.2019.9020735

Senthilkumar, C., Nirmala, P., Ahila, S. S., Geetha, M., & Ramesh, S. (2022). Predicting the

Frequency Bands and the Path Loss in Wireless Communication Systems using Random

Forests. 2022 3rd International Conference on Smart Electronics and Communication

(ICOSEC), 669–674. https://doi.org/10.1109/icosec54921.2022.9951963

Al-Amodi, A., Masood, M., & Khan, M. Z. M. (2022). Underwater Wireless Optical

Communication Channel Characterization Using Machine Learning Techniques. 7th

Optoelectronics Global Conference (OGC

2022). https://doi.org/10.1109/ogc55558.2022.10050890

https://doi.org/10.1109/milcom47813.2019.9020735
https://doi.org/10.1109/icosec54921.2022.9951963

 39

Kosmanos, D., Karagiannis, D., Argyriou, A., Lalis, S., & Maglaras, L. (2019). RF Jamming

Classification Using Relative Speed Estimation in Vehicular Wireless Networks. Security and

Communication Networks, 2021, 1–16. https://doi.org/10.1155/2021/9959310

Takahashi, Y., Sekine, T., & Yokoyama, M. (2007). A 70 MHz Multiplierless FIR Hilbert

Transformer in 0.35 m Standard CMOS Library. IEICE Transactions on Fundamentals of

Electronics Communications and Computer Sciences, E90-A(7), 1376–

1383. https://doi.org/10.1093/ietfec/e90-a.7.1376

Fix, E., & Hodges, J. L. (1989). Discriminatory anXalysis. Nonparametric discrimination:

Consistency properties. International Statistical Review, 57(3), 238.

https://doi.org/10.2307/1403797

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE Transactions on

Information Theory, 13(1), 21–27. https://doi.org/10.1109/tit.1967.1053964

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

https://doi.org/10.1023/a:1010933404324

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,

785–794. https://doi.org/10.1145/2939672.2939785

Guides. (n.d.). Weights & Biases Documentation. https://docs.wandb.ai/guides/, Last accessed

date: 14.01.2025

 40

APPENDIX A CONFUSION MATRICES

Figure 13 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-2, No VRS

Figure 14 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-2, VRS

 41

Figure 15 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-1, No VRS

Figure 16 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-1, VRS

 42

Figure 17 Confusion Matrix: KNN, Train: Dataset-1, Test: Dataset-1, No VRS

Figure 18 Confusion Matrix: KNN, Train: Dataset-1, Test: Dataset-1, VRS

 43

Figure 19 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, No VRS

Figure 20 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, VRS

 44

Figure 21 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-1, No VRS

Figure 22 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-1, VRS

 45

Figure 23 Confusion Matrix: RF, Train: Dataset-1, Test: Dataset-1, No VRS

Figure 24 Confusion Matrix: RF, Train: Dataset-1, Test: Dataset-1, VRS

 46

Figure 25 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization

Figure 26 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, VRS, Normalization

 47

Figure 27 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS

Figure 28 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS

 48

Figure 29 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-1, No VRS

Figure 30 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-1, VRS

 49

Figure 31 Confusion Matrix: XGBoost, Train: Dataset-1, Test: Dataset-1, No VRS

Figure 32 Confusion Matrix: XGBoost, Train: Dataset-1, Test: Dataset-1, VRS

 50

Figure 33 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization

Figure 34 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS, Normalization

 51

APPENDIX B WEIGHTS & BIASES

Figure 35 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-2, No VRS

 52

Figure 36 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-2 VRS

 53

Figure 37 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-1, No VRS

 54

Figure 38 Hyperparameter Graph: KNN, Train: Dataset-2, Test: Dataset-1, VRS

 55

Figure 39 Hyperparameter Graph: KNN, Train: Dataset-1, Test: Dataset-1, No VRS

 56

Figure 40 Hyperparameter Graph: KNN, Train: Dataset-1, Test: Dataset-1, VRS

 57

Figure 41 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, No VRS

 58

Figure 42 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, VRS

 59

Figure 43 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-1, No VRS

 60

Figure 44 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-1, VRS

 61

Figure 45 Hyperparameter Graph: RF, Train: Dataset-1, Test: Dataset-1, No VRS

 62

Figure 46 Hyperparameter Graph: RF, Train: Dataset-1, Test: Dataset-1, VRS

 63

Figure 47 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization

 64

Figure 48 Hyperparameter Graph: RF, Train: Dataset-2, Test: Dataset-2, VRS, Normalization

 65

Figure 49 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS

 66

Figure 50 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS

 67

Figure 51 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-1, No VRS

 68

Figure 52 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-1, VRS

 69

Figure 53 Hyperparameter Graph: XGBoost, Train: Dataset-1, Test: Dataset-1, No VRS

 70

Figure 54 Hyperparameter Graph: XGBoost, Train: Dataset-1, Test: Dataset-1, VRS

 71

Figure 55 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization

 72

Figure 56 Hyperparameter Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS, Normalization

