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CHAPTER 1 INTRODUCTION 

Autonomous vehicles are a technology that meets today's needs in road transportation 
and ushers in a new era in transportation. These vehicles share data with other autonomous 
vehicles in real time, process this data and make navigation decisions and ensure passenger 
safety with this method. Continuing uninterrupted communication is very important for 
autonomous vehicles to ensure operational success. 

As with every wireless communication system, there are also weaknesses in the 
communication analysis found in autonomous vehicles. They aim to improve the success of 
jammers by attacking autonomous operating systems. By intervening in this capability 
environment, they ensure that the communication signal belonging to the autonomous vehicle 
is disrupted. As a result of the disrupted signal, the autonomous vehicle cannot receive data and 
cannot receive information from other vehicles. Such attacks, through failures or delays, 
demonstrate the integrity and durability of an AV system or cause a worse accident. That shows 
the urgent need to develop some efficient mechanisms for detecting such threats and acting 
accordingly. 

Under these conditions, the knowledge of whether the situation is normal or jammed is 
important for communication systems because the countermeasure mechanisms change 
according to this decision. Misclassification can lead to overreaction due to non-malicious 
conditions or underreaction due to the presence of real threats. The work presented here aims 
to predict the attack scenarios of jammers using machine learning algorithms. 

These jammer attacks severely disrupt AV systems by disrupting key communication 
metrics such as signal reliability, latency, and packet delivery. Traditional methods for detecting 
anomalies in wireless networks rely on fixed thresholds or rule-based systems that cannot adapt 
to dynamic and diverse operational conditions. Since AVs operate in an ever-changing 
environment, solutions must be more flexible and intelligent. 

Jammer attacks can occur in different ways and different precautions should be taken 
against each scenario. The most popular of these are the Reactive Attack and Constant Attack 
scenarios. In the Reactive Attack scenario, the jammer does not attack until it receives the 
broadcast sent by the autonomous vehicle or gets close enough to the autonomous vehicle and 
starts the attack when it reaches the autonomous vehicle. This type of attack is difficult to detect 
because there is no jamming broadcast in the environment until the target autonomous vehicle 
is attacked, and the attack starts when the autonomous vehicle becomes vulnerable. In the 
Constant Attack scenario, there is a jammer in the environment, and it regularly pollutes the 
communication channel. While it can be detected more easily than in the Reactive Attack 
scenario, it seriously reduces the operational success of autonomous vehicles. In addition to 
jammer scenarios, communication systems may experience packet loss due to signal reflections 
and fading that may occur even if there is no jammer in the environment. It is also very 
important to distinguish this situation from jammer scenarios in terms of taking 
countermeasures. 

The countermeasure to be applied is selected as a result of the classification of the 
jammer attack scenario. If there is no jammer in the environment and packet loss or noise is 
encountered, the waveform's durability can be increased by switching to modulations with 
lower coding rates. In the Reactive Attack scenario, frequency hopping mode can be switched 
to and regular communication can be provided from the nearby jammer at a different frequency. 
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In the Constant Jammer scenario, since there is a fixed broadcast in the environment, 
communication can be continued at a fixed frequency other than the currently used frequency 
and the output power can be increased. 

Machine learning has emerged as one of the approaches that can be used to overcome 
the classification of jammer scenarios by recognizing patterns. Machine learning models can 
analyze key features such as received signal level, signal-to-noise ratio, and packet throughput 
to classify scenarios and predict potential jammer attacks. Unlike static methods, ML models 
learn from the data itself, and their performance improves over time and in various contexts. 
Since different jammer scenarios such as No Attack, Reactive Attack, or Constant Attack 
require different countermeasures, machine learning can be used to reliably classify these 
scenarios to secure an AV communication system. 

This study explores how the machine learning algorithms, including K-Nearest 
Neighbors (KNN), Random Forest (RF), and XGBoost, can be used for jammer detection in 
AV systems.  

Developing different machine learning models to classify the jammer attacking 
scenarios, comparing the performances of each model, identifying key input features like RSSI, 
SNR, PDR and Variation in Relative Speed are the objectives of this study. 
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CHAPTER 2 LITERATURE REVIEW 

There have been studies on machine learning in many different areas in RF 
communication systems. In this Literature Review section, a brief summary of machine learning 
or deep learning studies used in RF communication systems is given. 

The study of Jaganattah et al. (2019b) used machine learning algorithms for optimizing 
the wireless communication system for Internet of Things. The aim of the study is that 
optimizing spectrum sharing, medium access control, and routing protocols with machine 
learning models to improve overall communication efficiency in wireless networks. Using 
machine learning models is a good choice because traditional methods may be insufficient 
under variable environmental conditions and may consume more energy in calculations 
compared to machine learning models. The dataset used in the work includes signal 
characteristics and network parameters. The inputs of the model are network traffic data and 
signal characteristics. The proposed model predicts improvements in spectrum utilization and 
energy efficiency. Thus, it is aimed to increase the efficiency in both physical, network and 
application layers in terms of the use of machine learning in wireless communication systems. 
As a result of this study, it has been shown that the problem can be approached with different 
methods from supervised learning models to deep learning models in areas such as improving 
spectrum efficiency, optimizing routing and increasing energy efficiency under different 
environmental conditions of wireless communication systems. (Jagannath et al., 2019b) 

The study of Erpek et al. (2019) is about deep learning techniques applied to wireless 
communication systems in various study areas. The main purpose of the study is detecting 
signals, sensing spectrum, and modulation classification to improve the performance, safety 
and efficiency of the wireless communication systems. The dataset includes wireless 
communication signals from both simulated signals and real-world communication systems. 
The model is trained with the I/Q signal data, which is a digitalized signal, and the model 
classifies the signal type, channel state information, and jamming. The study uses deep neural 
networks and convolutional neural networks, for classification tasks and monitoring model’s 
performances with accuracy and mean squared error. The key findings of the study show that 
deep learning models performed better than traditional signal processing methods, especially 
when there is noise and interference in the environment. This study is presented as a guide for 
future research. As a result, the study shows that deep learning can be used in many areas such 
as jammer classification, signal classification and channel status in wireless communication 
systems and that the models used increase the resistance of communication systems against 
jamming attacks, close security gaps and increase their performance. (Erpek et al., 2019) 

The study of Sun et al. (2019) provides a review of machine learning techniques applied 
to wireless networks, such as resource management, networking, mobility management, and 
localization. The study has discussed in detail the problems and open issues that will be 
encountered with the use of supervised, unsupervised, and reinforcement learning models from 
the network layer to the physical layer and even to the application layer of wireless 
communication systems. As a result of this study, it has been shown that machine learning can 
be used in many areas such as spectrum management, beamforming, power management, 
indoor positioning, network traffic prediction. In addition, it has been presented that there are 
no standardized datasets for the difficulties encountered in using machine learning in wireless 
communication systems, that more work needs to be done on network slicing, and that models 
should be trained by combining data collected from different layers. (Sun et al., 2019) 
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In the study of Zhou et al. (2021), the use of machine learning algorithms to optimize 
advanced 5G wireless systems, focusing on tasks such as adaptive modulation selection, 
channel equalization, channel coding, beamforming, load prediction, and trajectory prediction 
is examined. The main purpose of the study is showing the effects of machine learning on 
network efficiency, performance, QoS, resource management and energy consumption. In this 
study, performance metrics for different tasks are given as follows, accuracy for the load 
prediction, error correction for channel coding, and resource allocation efficiency for 
beamforming. As a result of this study, it has been presented that the use of machine learning 
in 5G wireless systems has many benefits, but it can be difficult due to long training times and 
variable conditions. The study suggests using of distributed machine learning in future studies. 
(Zhou et al., 2021) 

The study of Ahmad and Agarwal (2024) presents the implementation of a machine 
learning algorithm for a Multiple-Input-Single-Output system using software-defined radios. It 
focuses on signal detection in MISO wireless communication systems without knowing the 
channel state in the transmitter side. Model is trained with the RF signals and predicting 
transmitted symbols. The dataset comprises combinations of signal and noise under different 
fading, noise, and channel distortions. The machine learning approach is outperformed 
traditional signal processing methods like maximum ratio transmission by improving the BER, 
energy consumption and the performance with a 10 dB gain. This study presents a method that 
increases system efficiency by eliminating the need to know the channel state on the transmitter 
side using machine learning. (Ahmad & Agarwal, 2024) 

In the study of Pan et al. (2018), supervised machine learning algorithms were used to 
improve the performance of radar systems under complex electromagnetic environment. The 
inputs to the model are the number of reference and guard cells in the constant false alarm rate 
detection process, jamming signal power, and the frequency modulation index of noise. The 
output is radar range estimation performance, which is compared with RMSE. Linear 
Regression, KNN, Support Vector Machine, Random Forest, Gradient Boosting, and Multilayer 
Perceptron models are trained on 90 experimental samples generated using uniform design 
methodology to predict radar performance. The analysis is conducted in scenarios involving 
jamming and noise, with features of both the radar and electromagnetic interference considered. 
MLP outperformed other models used in the study by RMSE (1.77) metric. As a result of this 
study, it has been shown that radar performance can be successfully estimated with MLP 
without the need for large amounts of data. (Pan et al., 2018) 

The study of McCaskey et al. (2018) explores the use of neural networks to model and 
optimize node-to-node RF communication channels. In this framework, the inputs and outputs 
represent transmitted and received bits, while the auto-encoder's middle layer simulates a phase-
modulated RF signal. The aim of the model is to minimize BER under AWGN channel. The 
key finding of the study is that the auto-encoder can effectively learn modulation schemes in 
noisy environments. The auto-encoder shows better performance in simulations, particularly 
when trained on noisy data. This study shows that although the traditional BPSK modulation 
provides better results than the presented auto-encode modulation in the experiments, the 
presented methodology can be used with future improvements. (McCaskey et al., 2018)  

The study conducted by Younes et al. (2023) presents machine learning algorithms to 
predict the frequency of the laser in an Orthogonal Frequency Division Multiplexing-Free 
Space Optics (OFDM-FSO) system under varying weather conditions. The dataset used in the 
study was collected with the Optisystem v.15 software, a simulation tool used for optical 
communication systems such as fiber optics, freespace optics and photonics, developed by 



 5 

OptiWave (OptiWave, 2025). The dataset includes distance between the optic communication 
systems and climatic conditions such as fog, rain, and clear conditions, with wavelengths of 
1550nm, 1250nm, and 850nm. For longer wavelengths (lower frequency), the atmospheric 
losses are lower, and the longer distances can be obtained with the laser. Random Forest and 
Linear Regression are trained to predict the best wavelengths based on weather conditions. The 
models take attenuation values as input under different weather conditions, while the output 
focuses on distance achieved by each wavelength. Random forest is outperformed Linear 
Regression by accuracy in this study. This study shows the use of machine learning to optimize 
FSO communication systems by selecting wavelengths based on climatic conditions. (Younes 
et al., 2023) 

The study of Menu et al. (2023), presents machine learning algorithms with a MIMO 
indoor visible light communication system to improve the reliability of data transmission. In 
the optical communication systems, a combination of LEDs is used for transmission the light 
like the transmitter antenna in the RF communication systems. Photodiodes are used as the 
receiver antenna like in the RF communication systems. The study applies Random Forest, 
Decision Tree, and Support Vector Machine algorithms to classify and predict transmitted 
messages. Performance metrics indicate that both Decision Tree and Support Vector Machine 
achieved 100% accuracy, while Random Forest achieved 97.4% accuracy. The study shows 
that machine learning algorithms can be used for classifying and predicting the transmitted 
messages in VLC with very high accuracy. (Menu et al., 2023) 

The study of (Aghabeiki et al., 2021), introduces a machine learning methodlogy to 
spectrum sensing for software-defined radio. Machine learning algorithms are used to detect 
signals with low level SNR in cognitive radio networks. The study compares four machine 
learning algorithms: Naïve Bayes, Support Vector Machine, Gradient Boosting Machine, and 
Distributed Random Forest. The dataset includes signal characteristics received under different 
noise levels, and the models are trained to classify signals. Principal component analysis is done 
to reduce dataset dimensionality. Performance of the models are compared by using ROC 
curves. Naïve Bayes and SVM models are the best performed models according to the research 
for both simulation and real-world tests, especially for low SNR conditions. This study has 
shown that machine learning models, especially NB and SVM, are effective and achieve high 
success rates in the field of spectrum sensing. (Aghabeiki et al., 2021) 

The study of Valieva et al. (2019), compares machine learning algorithms for classifying 
modulation types of a radio frequency communication system. The dataset consists of I/Q data 
and SNR values simulated various SNR conditions ranging from 1 to 30 dB by using Simulink 
model with AWGN for a software defined radio. Twenty-three supervised ML algorithms are 
compared in this study. Since the study will be used for real-time cognitive radio applications 
performance metrics are accuracy and prediction speed. The best accuracy is obtained with Fine 
Gaussian SVM achieved but it was too slow for real-time use. Decision Trees and Ensemble 
Boosted Trees models can be used for real time applications because their accuracy is high 
enough and they are fast. This study has shown that the modulation type of signals with high 
SNR values can be predicted with a high success rate (97% accuracy at SNR levels above 27 
dB) using machine learning models (Valieva et al., 2019). 

The study of Senthilkumar et al. (2022), compares two machine learning algorithms 
(Multilayer Perceptron and Random Forest) to predict frequency bands and path loss in wireless 
communication systems. The study focuses on frequency bands used in 5G and will be used in 
future networks, aiming to improve the base station’s spectrum allocation and path loss 
prediction. The dataset includes channel state information and environmental parameters. 
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Regression models were used to predict path loss and suitable frequency bands across a 
spectrum ranging from 1 to 100 GHz. The model’s performance is evaluated with metrics; mean 
absolute error, mean squared error, and R-squared. The Random Forest model achieved nearly 
90% accuracy in frequency band prediction and an R-squared of 89% in path loss prediction. 
Results shows that combining supervised and unsupervised learning methods significantly 
improves prediction accuracy for higher frequency bands. In addition, it has been presented that 
when Random Forest and PCA are used together, high success is achieved in path loss and 
frequency band estimation in 5G wireless communication systems and Random Forest can be 
used for future studies (Senthilkumar et al., 2022). 

The study of Al-Amodi et al. (2022) is about machine learning based Convolutional 
Neural Networks, to estimate and predict parameters of the channel for underwater 
communication systems. The underwater channel is different from the free space and the 
frequency of underwater communication systems uses lower frequency bands, but the attribute 
of the signal is very likely to the wireless radio frequency communication systems. The study 
presents challenges due to signal attenuation caused by absorption and scattering. The model is 
trained to estimate temperature gradients and air bubble levels, both of which impact channel 
performance. The CNN architecture is trained to estimate the channel parameters based on 
received signal data and signal samples. The dataset is both collected from real world 
applications and simulated data. The CNN's performance metrics are mean squared error and 
normalized MSE. The results shows that the CNN can predicts channel parameters with a good 
performance. (Al-Amodi et al., 2022) 
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CHAPTER 3 RESEARCH METHODOLOGY 

According to the literature review, machine learning and deep learning can be used in 
many different areas of RF Communication. In this study, the classification of jammer attacks 
against RF Communication systems used in autonomous vehicles will be provided with 
machine learning. For this reason, a total of 3 different machine learning models were trained 
with different combinations of two datasets and their performances were compared. This 
chapter explains how the study was done. 

Dataset Description 

The dataset used in this study is the dataset used in a study previously conducted by Kosmanos 
et al. (Kosmanos et al., 2019). The dataset is available via IEEE Dataport. The dataset used in 
this study was created to classify jamming methods used to prevent the operation of autonomous 
vehicles using machine learning. The dataset was divided into two by estimating the speed of 
the jammer relative to the autonomous vehicle, which was estimated from the I/Q Data analyzed 
at the physical level of the signal. One dataset was prepared with a maximum estimated relative 
speed of 15 m/s and the other dataset was prepared with an estimated relative speed of 25 m/s. 
The dataset includes Time, RSSI, SNR, PDR, Speed, Relative Speed and Scenario parameters. 

• Time: The time stamp of the measurements taken by the autonomous vehicle. 
• Received Signal Strength Indicator (RSSI): The parameter that shows the received 

signal level in dBm scale. 
• Signal to Noise Ratio (SNR): The ratio of the received signal to the noise level. 
• Package Delivery Ratio (PDR): A parameter that shows what percentage of packets 

sent by another vehicle were successfully received at the application level. 
• Speed: The speed of the autonomous vehicle in m/s at the time of measurement. 
• Relative Speed: The speed difference between the jammer and the autonomous vehicle 

in m/s. 
• Scenario: The type of attacks made by the jammer. 

RSSI is the parameter that expresses the power level perceived by the receiver of a signal 
sent by a transmitter in wireless communication systems. Since RSSI is a power level, it is 
expressed in dBm, relative to a reference power of 1 milliwatt (mW). 

SNR is the ratio of the received signal level to the ambient noise in wireless communication 
systems. It is generally expressed in dB. It is a parameter frequently used to understand the 
signal quality and whether there is any multipath or jammer in the environment. However, SNR 
alone is not enough to make an inference about why the noise floor is increasing. 

PDR is a parameter that shows what percentage of the packet from the transmitter side can 
be decoded on the receiver side in wireless communication systems. It is controlled at the upper 
level of communication systems. It is inversely proportional to the packet error rate. 

Speed indicates the speed of the autonomous vehicle. The speed of the vehicle at the time 
the measurement is taken is recorded. 

Relative Speed is an estimated parameter. It is the difference in speed between the jammer 
and the autonomous vehicle. This estimation is estimated using I/Q Data, which is the output 
of the Analog to Digital Converter circuit used in the physical level resolution of the signal. An 
example block diagram for Receiver Circuit is given at Figure 1 (Takahashi et al., 2007). It can 
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be explained as the main signal received from the antenna is multiplied with a Local Oscillator 
and the frequency of the signal is down converted to Intermediate Frequency. The reason behind 
the multiplying operation, the ADC has a sampling capacity, therefore when the signal is 
digitalized with a higher frequency, there can be some data loss, therefore its frequency is down 
converted initially. After that operation signal is digitalized, and I/Q data can be read by the 
FPGA or processor for further calculations. In our case it is used for both decoding the packages 
and estimating the Relative Speed of the Jammer. However, this parameter has already been 
estimated in the dataset used in this study. While doing this, the maximum estimated relative 
speed was determined as 15 and 25 m/s and 2 datasets were simulated accordingly. 

 

Figure 1 Example Circuit Diagram for Receiver (Takahashi et al., 2007)  

The scenarios in the dataset are classified into three types: No Attack, Reactive Attack and 
Constant Attack. “No Attack” is the scenario where there is no jammer exists in the 
environment, only the negative effects of multipath on communication, which occurs in areas 
where the signal reflection is high, such as in urban areas. In the “Reactive Attack” scenario, 
there is a jammer in the environment, but the jammer does not attack the target vehicle before 
approaching it but starts the jamming process when it is near the vehicle. Finally, in the 
“Constant Attack” scenario, there is a jammer in the environment, and it attacks continuously. 

In creating the dataset, 1000 measurements were taken in a simulation environment in 
accordance with the IEEE 802.11p standard for each scenario. The effects of environmental 
factors such as signal attenuation and interference were included using the Rician fading model. 
Each scenario has specific parameters designed to evaluate the attack style and effect of a 
jammer. In particular, the inclusion of the relative speed metric contributes to distinguishing 
between interference and jamming cases for classification. 

Data Simulation 

 The dataset used in this study was simulated for use in another study conducted by 
Kosmanos et al. The simulation environment, which can be seen from Figure 2, is designed to 
model autonomous vehicle communication scenarios and the effects of jammer attacks on these 
scenarios. The simulation operates in an urban topology with one transmitter and one receiver. 
In order to simulate realistic channel conditions, a Rician fading model is used, which includes 
on-line and off-line signal paths caused by reflections. This simulation model combines free 
space loss, Rayleigh effects and Doppler frequency shift to accurately reflect signal distortions 
caused by the movement of the autonomous vehicle and objects in the environment that may 
cause reflections. For the simulation to be adapted to real life, basic parameters such as output 
power, frequency and Doppler shifts are set in accordance with IEEE 802.11p standards. 
(Kosmanos et al., 2019) 
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Figure 2 Simulation Setup (Kosmanos et al., 2019) 

The study is taken with three different jamming scenarios. In the No Attack scenario, since 
there is no jammer in the network, only reflections, Doppler shift and free space loss are 
intended to be included. The Reactive Attack scenario refers to a situation where the jammer 
changes its output power and timing to avoid detection. In the Constant Attack scenario, the 
jammer continuously sends a polluting signal at maximum power, causing serious 
communication disruptions. 

Exploratory Data Analysis 

Exploratory Data Analysis (EDA) is applied to detect the distributions of the data in the 
dataset, the relationships between the parameters and the outliers. During EDA, it is also 
checked whether there is missing or misleading data in the dataset. If there is missing data, 
additions are made according to the type or cyclicality of the data. However, there is no need 
for any additional steps because no missing data is in the dataset used in this study. 

EDA is a couple of analyses such that correlation analysis, visualization and distribution 
of the data, to determine the relations between the features in the dataset. Visualization methods 
such as histograms, scatter plots, QQ plots, and heatmaps are very useful to understand the 
distributions in the data and the correlations between the variables. Exploratory data analysis is 
very important step in the training processes of the models, aiming to understand, organize and 
clean the data to increase the performance of the model. 

The histogram plots of the first dataset, the maximum relative speed estimated at 25 m/s, 
is given in Figure 3. When the histogram plots are examined, it can be seen that the samples are 
taken at regular intervals and the SNR, Speed, PDR and Relative Speed metrics are generally 
concentrated in the region. Apart from this, RSSI is concentrated in only one region. The 
scenarios are numbered 1, 2, 3 respectively as No Attack, Reactive Attack and Constant Attack. 

 

 QQ Plots of the first dataset can be seen from Figure 4, since Scenario is a categorical 
variable, it’s not shown on the QQ Plots. It can be understood from QQ Plots that the variables 
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used in the study are far from normal distribution. Detailed explanations of the plots are given 
below. 

 

Figure 3 Histogram Plots of Dataset 1 

 

Figure 4 QQ Plots of Dataset 1 
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• Time: 

The time parameter is distributed regularly. From here, it is seen that measurements are 
taken at regular intervals and recorded in the dataset. 

• SNR: 

The SNR variable is generally distributed between -30 dB and 20 dB. As the SNR level 
decreases, the possibility of an interference or jammer in the environment increases because the 
noise in the environment will increase in both conditions. For this reason, when the SNR value 
is below zero, it can be said that the environment is dirty in terms of RF signal. In general, the 
SNR values that can be measured in a communication system are also like this. 

• Speed: 

The speed variable of the autonomous vehicle generally varies between 22 and 25 m/s. This 
parameter also shows that it is simulated with a fixed speed in the simulation environment. 

• RSSI: 

RSSI is concentrated between -70 dBm and -50 dBm. When free space loss is taken into 
account, the signal levels obtained here make sense. Since the main factor affecting RSSI is the 
distance between two autonomous vehicles, RSSI of two vehicles may vary depending on the 
distance. 

• PDR: 

The PDR graph shows that the values are distributed between 0 and 1. A value of 1 indicates 
that no packet loss is encountered, while 0 indicates that all packets are lost. The high number 
of 0 values in the dataset indicates that the RF pollution in the environment affects the 
waveforms of the communication systems and that the packets cannot be recovered. 

• Relative Speed: 

The relative speed is distributed between 0 and 25, but there is more concentration at the 
values of 0 and 25 m/s. Since the maximum estimated relative speed parameter in this dataset 
is 25 m/s, a maximum of 25 m/s is also seen in the visuals. 

• Scenario: 

It is seen that the scenarios are distributed uniformly. As stated in the simulation, 1000 
samples were taken for each scenario. 

After examining the histogram and QQ Plots, in order to check whether there is a jammer 
attack in regions with low packet success rate and low SNR, and whether there is no jammer 
attack in regions with high SNR and high packet success rate, the SNR and PDR distributions 
were checked according to the scenarios given in Figure 5. It was seen from the visuals that 
there is a similar distribution with minor differences in each scenario. 
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Figure 5 SNR and PDR Distribution According to the Scenario of Dataset 1 

The correlation matrix, which can be seen from Figure 6, was used to analyze the 
relationships between the parameters in the dataset. There is a negative correlation (-0.85) 
between Time and Speed, and in the simulation conducted considering this information, we can 
see that the speed of the autonomous vehicle decreases as time progresses. Although not as 
strong as Speed and Time, there is also a negative correlation (-0.47) between Time and Relative 
Speed. From here, we can see that the relative speed between the autonomous vehicle and the 
jammer decreases as time progresses and is simulated. 

There is a positive correlation (0.62) between SNR and PDR. This is expected because 
the signal received by the communication system approaches the noise even more at low SNR 
values and even remains below the noise at negative SNR values. For this reason, packet loss 
is expected as the signal deteriorates. Similarly, there is a similar correlation (0.68) between 
RSSI and PDR. As the signal level decreases, the signal approaches the noise floor and the 
probability of the system making an error increase. 
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Figure 6 Pearson Correlation Matrix of Dataset 1 

The histogram plots of the second dataset, the maximum relative speed estimated at 15 
m/s, is given in 
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Figure 7. QQ Plots of the first dataset can be seen from Figure 8. There is not a 
significant difference between the first and the second dataset. The only difference is speed and 
relative speed because this simulation is done for 15 m/s. 

 

Figure 7 Histogram Plots of Dataset 2 
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Figure 8 QQ Plots of Dataset 2 

After examining the histogram and QQ Plots, in order to check whether there is a jammer 
attack in regions with low packet success rate and low SNR, and whether there is no jammer 
attack in regions with high SNR and high packet success rate, the SNR and PDR distributions 
were checked according to the scenarios given in Figure 9. It was seen from the visuals that 
there is a similar distribution with minor differences in each scenario for the second dataset. 
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Figure 9 SNR and PDR Distribution According to the Scenario of Dataset 2 

The correlation matrix, which can be seen from  
Figure 10. In this Pearson Correlation Matrix, it is seen that the correlation between 

speed and relative speed is lower over time compared to the first dataset. As in the first dataset, 
there is a positive relationship between SNR and PDR and RSSI and PDR. In this dataset, unlike 
the first dataset, there is a strong negative relationship between Scenario and RSSI and Scenario 
and PDR. From this situation, it is understood that there is usually no jammer when high RSSI 
and high packet performance ratio are obtained. 
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Figure 10 Pearson Correlation Matrix of Dataset 2 

Data Preprocessing 

In the data preprocessing process, two data sets containing 15 m/s and 25 m/s relative 
speeds were studied. In order to increase the performance of the model, a parameter was derived 
that shows whether there is any change in the relative speed. The VRS metric used in the study 
conducted by Kosmanos et al. is a metric that controls the change in the relative speed of the 
jammer with the autonomous vehicle. In each measurement taken, the previous and next 
Relative Speed values are compared, and it is determined whether there is a change. If there is 
a change, the VRS parameter is set to 1, if there is no change, the VRS parameter is set to 0. 
The algorithm processes each measurement in order and returns the VRS result of each 
measurement as a list. (Kosmanos et al., 2019). It is evaluated that the VRS parameter will play 
an important role in the estimation of the No Attack scenario in the modeling process. 

When separating the data set into training and test data, care was taken to ensure that 
both sets were uniform. A balanced separation of the training and test sets ensured that different 
speeds and scenario conditions were sufficiently represented in both sets. As a result of the 
splitting process, 30% of the data set was separated as training and 70% as test data. This ratio 
was chosen to prevent the model from memorizing or overfitting. For all the KNN models, 
models are trained with a normalized data by Standard Scaler. Because RSSI and SNR values 
are high integer values compared to VRS and PDR parameters, they affect the performance of 
models based on distance calculation such as KNN. However, since decision tree-based 
machine learning algorithms such as Random Forest and XGBoost do not calculate distance, 
there is no need to normalize the data. For these two models, an experiment was conducted to 
check whether there was a change in performance when data is normalized. Therefore, Standard 
Scaler was not used in all Random Forest and XGBoost models. 
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A third test and train set were created to see what the performance of the model would 
be when trained for one relative speed and tested with data from another relative speed. In this 
case, the train set was set to 15 m/s and the test set was set to 25 m/s. 

 
The 3D scatters of train and test set obtained from the first dataset (25 m/s) can be seen 

from  
Figure 11. 3D When 3D scatters are examined, the RSSI, SNR and VRS distributions 

in 3D space are shown in the first row. It is seen that in the scenario where there is no jammer 
in the environment, the VRS metric is always 0, and if there is a jammer in the environment, it 
is always 1. When there is a jammer, more complex analyses should be performed to classify 
the attacking scenario from RSSI and SNR. In the plots in the second row, the RSSI, SNR and 
PDR distributions in 3D space can be seen. It is seen that the distributions of the data for each 
scenario are intertwined and cannot be easily classified. 

 

 

 

Figure 11 3D Scatters of Train and Test Set Obtained from Dataset 1 

The uniform distribution of the test and train set according to the scenario can be seen 
from Table 1.  
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Table 1 Train and Test Set size for Dataset 1 

Scenario Train Size Test Size 
1 300 700 
2 300 700 
3 300 700 

 
The 3D scatters of original train and test set obtained from the second dataset (15 m/s) 

can be seen from  
Figure 12. When the plots are examined, it is seen that the distribution of the second 

dataset in 3D space is similar to the first dataset and there is no major difference between the 
distributions of the datasets. 

 

 

Figure 12 3D Scatters of Train and Test Set Obtained from Dataset 2 

The uniform distribution of the test and train according to the scenario set can be seen 
from Table 2. 
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Table 2 Train and Test Set size for Dataset 2 

Scenario Train Size Test Size 
1 300 700 
2 300 700 
3 300 700 

The uniform distribution of the train set obtained from the second dataset and test set 
obtained from first dataset can be seen from Table 3.  

Table 3 Train Set size for Dataset 1 and Test Set size for Dataset 2 

Scenario Train Size Test Size 
1 1000 1000 
2 1000 1000 
3 1000 1000 

Models 

The models used in this study are the KNN, Random Forest and XGBoost models described 
below. 

• K-Nearest Neighbors (KNN) 

The foundations of the KNN algorithm were laid in a study conducted by Evelyn Fix 
and Joseph Hodges (Fix & Hodges, 1989). In addition to this study, Thomas Cover expanded 
the work of Fix and Hodges with his Nearest Neighbor Pattern Classification study (Cover & 
Hart, 1967). KNN is a supervised machine learning algorithm which is used for both regression 
and classification tasks. Unlike decision trees and random forests which are model based 
learning methods, KNN is lazy or instance-based learning algorithm. In instance-based 
learning, there is no build explicit model from the training data, it stores the training dataset and 
based on that dataset predictions are made with the unseen data by comparing to its nearest 
training examples in the space. So, computation is halted until it needs to make predictions (lazy 
learning) and it uses entire dataset for the predictions (instance-based learning). Also, KNN 
does not make any assumption about the underlying data distribution. 

KNN in classification process is like the following: 

• Distance Calculations: In this phase, the distance between unseen data point 
and every point in the dataset is calculated. 

• Find Nearest Neighbors: Based on the chosen metric which refers to K, 
identifying the K closest neighbors to that of unseen datapoint. In this phase, 
distance metric decision is very important. 

• Voting: Class of the unseen data point is determined by majority voting by 
investigating the K nearest neighbors. 

KNN in regression process is like the following: 

• Distance Calculations: In this phase, the distance between unseen data point 
and every point in the dataset is calculated. 
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• Find Nearest Neighbors: Based on the chosen metric which refers to K, 
identifying the K closest neighbors to that of unseen datapoint. In this phase, 
distance metric decision is very important. 

• Prediction: Prediction of the unseen data point calculated using target values of 
the K nearest neighbors. Usually average of the items are taken.  

The most important thing in KNN is the distance metrics. Usually following three 
distance metrics are used: 

• Eucledian Distance:   Euclidean distance between two points in Euclidean 
space is the length of the line segment between them. This is also referred as L2 
norm. It is the shortest distance to go from one point to another. This tends to 
penalize heavier on larger differences. This distance metric is very sensitive to 
outliers. The formula is as follows: 

𝑑(𝑥, 𝑦) = ()(𝑥! − 𝑦!)"
#

!$%

 

• Manhattan Distance:  Manhattan distance (L1 Norm) is the sum of the 
magnitudes of the vectors in a space. It is the most natural way of measure 
distance between vectors, that is the sum of absolute difference of the 
components of the vectors. In this norm, all the components of the vector are 
weighted equally. This metric is less sensitive to outliers.  

𝒅(𝒙, 𝒚) =)|𝑥! − 𝑦!|
𝒏

𝒊$𝟏

 

• Cosine Similarity:  This metric measures the similarity between two vectors of 
an inner product space. This metric is less sensitive to magnitude differences 
between features.  

𝒄𝒐𝒔(𝜽) =
𝑨.𝑩

‖𝑨‖‖𝑩‖ =
∑ 𝑨𝒊𝑩𝒊𝑵
İ$𝟏

8∑ 𝑨𝒊𝟐𝒏
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 Hyperparameter tuning is important when developing machine learning models to 
investigate the best parameter combination. Generally, following hyperparameters are tuned 
while developing KNN: 

1. Number of Neighbors 
• K is the most important hyperparameter. 
• If K is too large, distance is calculated with too many points which are far 

away from each other which causes other classes to play role. This causes 
model to become too smooth and possibly underfit the data.  

• If K is too small, the model become too sensitive to outliers and noise. Model 
has a risk to overfit. 
 
  



 22 

2. Distance Metric 
• Euclidean distance is the most common choice for continuous numerical 

data.  
• Decision is based on domain knowledge.  

3. Weighting Scheme 
• Uniform weighting: Each of the K values affect the calculations equally to 

the final prediction.  
• Distance-weighted: Closest neighbors have a higher weight than the far 

neighbors. 
4. Neighbor search algorithm 

• Brute Force: This computes the distance to all points in the training set.  
• Tree Based: If dataset is too large, it can speed up neighbor searches.  

 
• Random Forest 

 Random Forest is a Decision Tree based classification and regression algorithm which 
is introduced by Leo Breiman (Breiman, 2001). It consists of multiple decision trees at training 
time and outputs either the mode of classes for classification or the mean prediction for 
regression.  It uses bagging method which is an ensemble method which combines multiple 
learners to produce the final learned model. These learners are weak learners and used as a base 
estimator. For each tree random forests use random subset of the data also called as bootstrap 
samples for each bagging. By introducing randomness, trees become uncorrelated which 
reduces the variance the final prediction.  

 To understand random forest better, decision trees must be investigated first. Decision 
tree composes of internal nodes which is also called as decision points and leaf nodes which is 
also called as final predictions. At each node, decision tree algorithm selects a feature and a 
threshold which separates the data with homogenous labels best in classification tasks. For 
regression tasks, values are splitted rather than categories. For loss function, Gini impurity or 
entropy is used for classification and mean squared error tried to minimize for regression. A 
stopping criterion must be set to avoid tree to keep growing and possibly overfit. A single 
decision tree has a severe risk to overfit that is why random forests are introduced by averaging 
across many decision trees to stabilize the final prediction.  

 Random forests work by combining the bagging with random forest selection. 

1. Bagging (Bootstrap Sampling):  
• For each tree, training set sampling is done with replacement from the 

original dataset. This means some instances will appear multiple times in 
tree’s training subset where as some will not appear at all. 

2. Random Feature Selection:  
• When splitting a node in the tree, random forest considers only the subset of 

the features rather than selecting all the features. 
• With this feature decorrelates the trees because each tree sees different subset 

of features at each split. 
3. Tree Construction: 

• Each tree is grown to a large depth. The randomness introduced helps reduce 
the risk of overfitting that would otherwise happen with a single deep tree.  

 



 23 

4. Prediction Combination: 
• Each tree votes for a class. The final class is based on majority vote across 

all trees.  
• The final prediction value is the average of each tree numeric prediction.  

Hyperparameter tuning is important when developing machine learning models to investigate 
the best parameter combination. Generally, following hyperparameters are tuned while 
developing Random Forests: 

1. Number of trees: 
• This parameter controls the number of trees 
• More trees generally improve performance however training time is 

increased. 
• Larger values can stabilize the predictions. 

2. Max Features: 
• For classification tasks, default is the square root of the total number of 

features.  
• For regression tasks common default option is total number of features 

divided by 3.  
• It controls how random each tree’s split is. 

3. Max depth: 
• It controls how deep each tree can grow.  
• To capture more complex dependencies, deeper trees must be used but there 

is a risk of overfitting.  
4. Min Samples Split: 

• This is the minimum number of samples required to split an internal node.  
• This parameter prevents trees from becoming to deep and overfit. 
• Larger values prevent make the trees less prone to overfitting.  

5. Min Samples Leaf:  
• This is the minimum number of samples in a leaf node.  
• This ensures each leaf has at least a certain number of samples. 

6. Bootstrap: 
• This parameter decides whether to use bootstrap or not. If set to false, the 

entire dataset is used for each tree.  
7. Criterion: 

• This is for criterion metric. For classification, gini impurity or entropy is 
used. For regression, mean squared error or mean absolute error is used.  

Random forests provide high accuracy and robustness and can handle large feature spaces. 
It also prevents overfitting. However, they are less interpretable and has computational and 
memory cost.  

• XGBoost 

 Extreme Gradient Boosting is a frequently used and effective machine learning 
algorithm for classification presented by Tianqi Chen (Chen & Guestrin, 2016). XGBoost is a 
gradient boosting algorithm designed for speed and performance. The main idea is as follows: 

• Start with simple model. This can be like a constant value. 
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• Compute the gradients. For classification tasks, make the calculations using the 
gradient of the loss function with respect to the predictions. For regression tasks, 
residual is the difference between the current prediction and the target.  

• Based on the gradients, train a new model 
• Add the new model to the ensemble with a certain weight and learning rate.  
• Repeat the process until the stopping criteria is reached. 

XGBoost uses second order derivative of the loss function instead of just first order 
gradients to provide more accurate approximations. It includes L1 and L2 regularization to 
reduce overfitting in the trees. By this way, it encourages smaller simpler trees. It uses a concept 
called “gain” to measure how good a split is.  

Hyperparameter tuning is important when developing machine learning models to 
investigate the best parameter combination. Generally, following hyperparameters are tuned 
while developing XGBoost: 

1. Number of estimators:  
• Number of trees used in the algorithm.  
• More trees can improve performance however this leads to overfitting.  

2. Learning rate: 
• Determines the contribution of each tree by a factor. Generally, between 0 

and 1.  
• Smaller learning rates requires more trees but can lead to better 

generalization. 
3. Max depth: 

• Maximum depth of each tree. 
4. Subsample:  

• Fraction of training samples used to grow each tree. 
• A value smaller than 1 act like bagging. 

5. Subsample ratio of columns: 
• Fraction of features used in each tree or at each split. 
• It is like random forest feature subsampling. 

In order to examine their performance under different datasets, the models were trained 
with the train and test set combinations given in Table 4. 
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Table 4 Model Combinations 

Models Source of Train Set  Source of Test Set  Standard Scaler VRS 

KNN 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes Yes 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes Yes 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes No 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes Yes 

Random Forest 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No Yes 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes Yes 

XGBoost 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No Yes 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes No 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes Yes 
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Hyperparameter Tuning 

Hyperparameter tuning process was performed to optimize model performance. In this 
process, it was aimed to obtain the best performance by trying various hyperparameter 
combinations for different models. The tuned hyperparameters can be seen from Table 5. For 
cross validation, "GridSearchCV" function was used within the scope of hyperparameter 
tuning. In this way, cross validation sets were created at a ratio of 4 to 1 from the given 
hyperparameter set and the best hyperparameter set was selected according to the average 
metrics for hyperparameters. Jammer attacking scenarios were predicted over the test set with 
the selected parameter set. 

Weights & Biases is an online tool used to track and manage the outputs of many 
functions such as hyperparameter tuning and tracking performance metrics in the 
implementation of machine learning algorithms. It enables visualization to better understand 
the impact of metrics, so that the performance metrics, hyperparameters and model conditions 
can be easily followed by the user (Guides, n.d.). Weights & Biases integration to the 
implementation of the study is done. With this integration, effects of hyperparameter tuning can 
be seen online. The results of hyperparameter tuning can be seen at Appendix B. 

Table 5 Hyperparameters 

Model Hyperparameter Values 

KNN 
Number of Neighbors 1,2,3,…,50 
Weights 'uniform', 'distance’ 
Metric ‘euclidean', 'manhattan', 'minkowski' 

Random Forest 

Number of Estimators 10, 20,30,…,200 
Max Depth 5,10,15,20 
Minimum Samples Split 2, 5, 10 
Minimum Samples Leaf 1, 2, 4 
Bootstrap True, False 

XGBoost 

Number of Estimators 50,100,150,200,250 
Max Depth 3, 5, 7, 9 
Learning Rate 0.01, 0.05, 0.1, 0.2 
Subsample 0.6, 0.8, 1.0 
Subsample ratio of columns 0.6, 0.8, 1.0 

Performance Metrics 

To evaluate the model performance, metrics such as accuracy, precision, recall, F1-score 
and support were used. Thanks to these metrics, the performance of the model under different 
scenarios was observed. 

• Accuracy 

Accuracy is the ratio of correct predictions made to total predictions.  

• Precision 

Precision is the ratio of predictions that correctly labeled positively to all labeled positive 
targets.  
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 

• Recall 

Recall is the ratio of predictions that correctly labeled as positive to the targets that are 
positive.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 

• F1 Score 

F1 Score is harmonic mean of precision and recall. F1 score gives equal importance to 
precision and recall.  

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2

1
𝑟𝑒𝑐𝑎𝑙𝑙 +

1
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

 

In addition to these metrics, a confusion matrix is also extracted for the models trained 
with each dataset combination. The confusion matrix visualizes the distribution of each 
correctly and incorrectly classified scenario. In this matrix, the relationships between the true 
classes and the predicted classes are clearly shown and it is analyzed whether the model tends 
to confuse certain classes. 
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CHAPTER 4 RESULTS 

In this section, the results obtained in the study are presented in detail. This study 
examines the performance of models developed with different train and test sets for the 
detection and classification of jammer attacks against communication systems used in 
autonomous vehicles and the effect of optimized hyperparameters. In order to evaluate the 
performance of the models, primarily the Accuracy metric, as well as Precision, Recall, F1 
Score and Support metrics were recorded. In addition, feature importance was checked in order 
to understand which parameter had the most effect in the training of the models. Accuracy 
results of the models trained in each combination are given in Table 6. 
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Table 6 Accuracy Results of Each Model 

Models Source of Train Set  Source of Test Set  
Standard 

Scaler VRS Accuracy 

KNN 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes No 0.79 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes Yes 0.81 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes No 0.62 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes Yes 0.73 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes No 0.89 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) Yes Yes 0.93 

Random 
Forest 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No No 0.78 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No Yes 0.82 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 0.60 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 0.68 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 0.90 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 0.95 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes No 0.78 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes Yes 0.82 

XGBoost 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No No 0.78 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) No Yes 0.83 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 0.60 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 0.68 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No No 0.91 

Dataset-1 
(Rel. Speed: 25 m/s) 

Dataset-1 
(Rel. Speed: 25 m/s) No Yes 0.94 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes No 0.79 

Dataset-2 
(Rel. Speed: 15 m/s) 

Dataset-2 
(Rel. Speed: 15 m/s) Yes Yes 0.82 
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When the results are examined, it is seen that KNN, Random Forest and XGBoost 
models give simmilar results. When the VRS parameter is used, the accuracy is increased, 
because the presence of the VRS parameter almost eliminates the incorrect No Attack 
classification. While the VRS parameter is zero in the No Attack case, it is one in the Reactive 
Attack or Constant Attack scenarios. For this reason, it increases the performance of the model. 
When the model is trained with one dataset and tested with the other dataset, it is seen that its 
performance is lower. It is seen that the reason for this is that there are only simulations made 
in one way in the training dataset, and the model is not sufficient when different conditions 
occur. In order to increase the performance of the model under different conditions, the model 
can be trained with data created under different conditions. 

The other performance metrics (Precision, Recall, F1 Score and Support) can be seen 
from below section.  

KNN Train: 15 m/s Test 15 m/s, No VRS, Normalization 

Table 7 Performance Metrics of KNN Train: 15 m/s Test 15 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.93 0.96 0.94 700 
Reactive Attack 0.70 0.70 0.70 700 
Constant Attack 0.73 0.71 0.72 700 

KNN Train: 15 m/s Test 15 m/s, VRS, Normalization  

Table 8 Performance Metrics of KNN Train: 15 m/s Test 15 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00 1.00 1.00 700 
Reactive Attack 0.72 0.73 0.72 700 
Constant Attack 0.73 0.71 0.72 700 

KNN Train: 15 m/s Test 25 m/s, No VRS, Normalization  

Table 9 Performance Metrics of KNN Train: 15 m/s Test 25 m/s, No VRS, No Normalization  

Scenario Precision Recall F1-Score Support 
No Attack 0.68       0.94       0.79       1000 
Reactive Attack 0.59       0.81       0.69       1000 
Constant Attack 0.41       0.10       0.16       1000 

KNN Train: 15 m/s Test 25 m/s, VRS, Normalization 

Table 10 Performance Metrics of KNN Train: 15 m/s Test 25 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00       1.00       1.00       1000 
Reactive Attack 0.57       0.84       0.68       1000 
Constant Attack 0.69       0.37       0.48       1000 
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KNN Train: 25 m/s Test 25 m/s, No VRS, Normalization 

Table 11 Performance Metrics of KNN Train: 25 m/s Test 25 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.89       0.93       0.91        700 
Reactive Attack 0.91       0.86       0.88        700 
Constant Attack 0.86       0.87       0.87        700 

KNN Train: 25 m/s Test 25 m/s, VRS, Normalization 

Table 12 Performance Metrics of KNN Train: 25 m/s Test 25 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00       1.00       1.00        700 
Reactive Attack 0.92       0.88       0.90        700 
Constant Attack 0.88       0.93       0.90        700 

RF Train: 15 m/s Test 15 m/s, No VRS, No Normalization 

Table 13 Performance Metrics of RF Train: 15 m/s Test 15 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.92       0.95       0.94        700 
Reactive Attack 0.70       0.73       0.71        700 
Constant Attack 0.72       0.67       0.70        700 

RF Train: 15 m/s Test 15 m/s, VRS, No Normalization  

Table 14 Performance Metrics of RF Train: 15 m/s Test 15 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00       1.00       1.00        700 
Reactive Attack 0.72       0.76       0.74        700 
Constant Attack 0.75       0.71       0.73        700 

RF Train: 15 m/s Test 25 m/s, No VRS, No Normalization  

Table 15 Performance Metrics of RF Train: 15 m/s Test 25 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.72       0.94       0.81       1000 
Reactive Attack 0.55       0.70       0.62       1000 
Constant Attack 0.39       0.17       0.24       1000 

 

  



 32 

RF Train: 15 m/s Test 25 m/s, VRS, No Normalization 

Table 16 Performance Metrics of RF Train: 15 m/s Test 25 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00       1.00       1.00       1000 
Reactive Attack 0.52       0.69       0.59       1000 
Constant Attack 0.54       0.36       0.43       1000 

RF Train: 25 m/s Test 25 m/s, No VRS, No Normalization 

Table 17 Performance Metrics of RF Train: 25 m/s Test 25 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.91       0.93       0.92        700 
Reactive Attack 0.93       0.86       0.90        700 
Constant Attack 0.86       0.92       0.89        700 

RF Train: 25 m/s Test 25 m/s, VRS, No Normalization 

Table 18 Performance Metrics of RF Train: 25 m/s Test 25 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00       1.00       1.00        700 
Reactive Attack 0.95       0.89       0.92        700 
Constant Attack 0.89       0.96       0.92        700 

RF Train: 15 m/s Test 15 m/s, No VRS, Normalization 

Table 19 Performance Metrics of RF Train: 15 m/s Test 15 m/s, No VRS, Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.92       0.96       0.94        700 
Reactive Attack 0.70       0.72       0.71        700 
Constant Attack 0.72       0.67       0.70        700 

RF Train: 15 m/s Test 15 m/s, VRS, Normalization 

Table 20 Performance Metrics of RF Train: 15 m/s Test 15 m/s, VRS, Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.00       1.00       1.00        700 
Reactive Attack 0.72       0.77       0.74        700 
Constant Attack 0.75       0.70       0.73        700 
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XGBoost Train: 15 m/s Test 15 m/s, No VRS, No Normalization 

Table 21 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.93 0.93 0.93 700 
Reactive Attack 0.70 0.72 0.71 700 
Constant Attack 0.70 0.67 0.69 700 

XGBoost Train: 15 m/s Test 15 m/s, VRS, No Normalization  

Table 22 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.0 1.0 1.0 700 
Reactive Attack 0.73 0.76 0.74 700 
Constant Attack 0.75 0.72 0.74 700 

XGBoost Train: 15 m/s Test 25 m/s, No VRS, No Normalization  

Table 23 Performance Metrics of XGBoost Train: 15 m/s Test 25 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.73 0.96 0.83 1000 
Reactive Attack 0.53 0.67 0.59 1000 
Constant Attack 0.39 0.16 0.23 1000 

XGBoost Train: 15 m/s Test 25 m/s, VRS, No Normalization 

Table 24 Performance Metrics of XGBoost Train: 15 m/s Test 25 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.0 1.0 1.0 1000 
Reactive Attack 0.52 0.70 0.59 1000 
Constant Attack 0.53 0.35 0.42 1000 

XGBoost Train: 25 m/s Test 25 m/s, No VRS, No Normalization 

Table 25 Performance Metrics of XGBoost Train: 25 m/s Test 25 m/s, No VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.93 0.93 0.93 700 
Reactive Attack 0.95 0.88 0.91 700 
Constant Attack 0.86 0.92 0.89 700 
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XGBoost Train: 25 m/s Test 25 m/s, VRS, No Normalization 

Table 26 Performance Metrics of XGBoost Train: 25 m/s Test 25 m/s, VRS, No Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 1.0 1.0 1.0 700 
Reactive Attack 0.95 0.88 0.91 700 
Constant Attack 0.89 0.96 0.92 700 

XGBoost Train: 15 m/s Test 15 m/s, No VRS, Normalization 

Table 27 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, No VRS, Normalization 

Scenario Precision Recall F1-Score Support 
No Attack 0.93 0.95 0.94 700 
Reactive Attack 0.70 0.73 0.72 700 
Constant Attack 0.72 0.69 0.70 700 

XGBoost Train: 15 m/s Test 15 m/s, VRS, Normalization 

Table 28 Performance Metrics of XGBoost Train: 15 m/s Test 15 m/s, VRS, Normalization  

Scenario Precision Recall F1-Score Support 
No Attack 1.0 1.0 1.0 700 
Reactive Attack 0.72 0.77 0.74 700 
Constant Attack 0.75 0.71 0.73 700 

The feature importances can be seen from Table 29. This table shows the most important 
parameters that affect the performance of KNN, Random Forest and XGBoost when models 
are trained with different combinations. For Random Forest and XGBoost, no normalization 
was performed except for the lines containing the Normalization statement given in the table. 
Since the distance calculation was performed for KNN, normalization was performed for each 
training and test set combination. In general, RSSI parameter is the most important feature. If 
the VRS parameter is used, the parameter that has the most effect on the model is VRS. VRS 
has been the feature with the highest importance scores, especially in the XGBoost model. Since 
VRS has a great effect in the No Attack scenario, this situation is expected to be encountered. 
The PDR and SNR parameters are less important for overall models.  
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Table 29 Feature Importances 

Input Combination KNN (Always 
Normalized) Random Forest XGBoost 

Train Set: Dataset-2 (15 m/s) 
Test Set:  Dataset-2 (15 m/s) 

RSSI: 0.322476 
SNR:  0.231429 
PDR:  0.229143 

RSSI: 0.244000 
PDR:  0.094857 
SNR:  0.090095 

RSSI:  17.715017 
SNR:  11.674231 
PDR:   5.715641 

Train Set: Dataset-2 (15 m/s) 
Test Set:  Dataset-2 (15 m/s) 
VRS 

VRS:  0.348667 
SNR:  0.141619 
RSSI: 0.129048 
PDR:  0.052000 

VRS:  0.382857 
RSSI: 0.108667 
SNR:  0.082381 
PDR:  0.074476 

VRS: 23.264172 
RSSI: 4.049105 
SNR:  1.583684 
PDR:  1.513139 

Train Set: Dataset-2 (15 m/s) 
Test Set:  Dataset-1 (25 m/s) 
 

PDR:  0.233333 
RSSI: 0.190600 
SNR:  0.052267 

RSSI: 0.092067 
PDR:  0.041200 
SNR: -0.003400 

RSSI: 2.112059 
SNR:  0.651852 
PDR:  0.595214 

Train Set: Dataset-2 (15 m/s) 
Test Set:  Dataset-1 (25 m/s) 
VRS 

VRS:  0.286933 
RSSI: 0.097333 
PDR: 0.042333 
SNR:  0.035800 

VRS:  0.284800 
RSSI: 0.018400 
PDR: -0.006267 
SNR: -0.042400 

VRS: 402.185913 
RSSI:  21.852936 
PDR:   17.722486 
SNR:   16.116278 

Train Set: Dataset-1 (25 m/s) 
Test Set:  Dataset-1 (25 m/s) 
 

RSSI: 0.498381 
PDR:  0.354952 
SNR:  0.273238 

RSSI: 0.345143 
SNR:  0.157714 
PDR:  0.118095 

RSSI: 1.899271 
PDR:  1.107933 
SNR:  0.912065 

Train Set: Dataset-1 (25 m/s) 
Test Set:  Dataset-1 (25 m/s) 
VRS 

VRS:  0.411143 
RSSI: 0.252857 
PDR:  0.158952 
SNR:  0.128190 

VRS:  0.357143 
RSSI: 0.253333 
PDR:  0.095048 
SNR:  0.080381 

VRS:  22.303427 
RSSI:  3.531750 
SNR:   1.750347 
PDR:   1.580866 

Train Set: Dataset-2 (15 m/s) 
Test Set:  Dataset-2 (15 m/s) 
Normalization 

N/A 
RSSI: 0.227524 
SNR:  0.109143 
PDR:  0.068286 

RSSI: 9.579320 
PDR:  3.202416 
SNR:  3.181648 

Train Set: Dataset-2 (15 m/s) 
Test Set:  Dataset-2 (15 m/s) 
VRS 
Normalization 

N/A 

VRS:  0.391143 
RSSI: 0.112571 
SNR:  0.112190 
PDR:  0.073048 

VRS:  39.290897 
RSSI: 10.007263 
PDR:   4.358130 
SNR:   3.658278 
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CHAPTER 5 CONCLUSION 

In this study, the use of machine learning for scenario detection in jammer attacks 
against communication systems used in autonomous vehicles is discussed. Since the 
vulnerability created by the weak points of autonomous vehicles' wireless communication 
networks can cause operational failures, an attempt has been made to classify jammer scenarios. 
In this context, developing effective and fast detection methods for jammer scenarios is critical 
for autonomous vehicle systems. 

Jammer detection was performed using XGBoost, Random Forest and k-Nearest 
Neighbors (KNN) algorithms. In the study conducted, the similar performances were obtained 
with KNN, Random Forest and XGBoost models. Hyperparameter tuning was performed to 
increase the performance of the models, and the most ideal parameters were determined. In 
particular, all of the models provided a similar and high performance in terms of accuracy and 
other performance metrics. RSSI and VRS are very important parameters in terms of the 
performance of the models. The results of the project revealed that KNN, Random Forest and 
XGBoost algorithms can be used for jammer detection. 

As a future work, more complex relationships can be learned from signal features using 
more complex deep learning models such as CNN or LSTM. In addition, models can be trained 
by collecting more data, both in number and variety, from the physical level of the wireless 
communication system in addition to the data in the dataset used.The developed models can be 
tested in real-time scenarios and updated against new requirements.  

In conclusion, this study has shown that machine learning-based approaches offer a 
solution for jammer detection.  
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APPENDIX A CONFUSION MATRICES 

 

Figure 13 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-2, No VRS 

 

Figure 14 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-2, VRS 
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Figure 15 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-1, No VRS 

 

Figure 16 Confusion Matrix: KNN, Train: Dataset-2, Test: Dataset-1, VRS 
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Figure 17 Confusion Matrix: KNN, Train: Dataset-1, Test: Dataset-1, No VRS 

 

Figure 18 Confusion Matrix: KNN, Train: Dataset-1, Test: Dataset-1, VRS 

 



 43 

 

Figure 19 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, No VRS 

 

Figure 20 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, VRS 
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Figure 21 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-1, No VRS 

 

Figure 22 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-1, VRS 
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Figure 23 Confusion Matrix: RF, Train: Dataset-1, Test: Dataset-1, No VRS 

 

Figure 24 Confusion Matrix: RF, Train: Dataset-1, Test: Dataset-1, VRS 
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Figure 25 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization 

 

 

Figure 26 Confusion Matrix: RF, Train: Dataset-2, Test: Dataset-2, VRS, Normalization 
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Figure 27 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS 

 

Figure 28 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS 
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Figure 29 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-1, No VRS 

 

Figure 30 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-1, VRS 
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Figure 31 Confusion Matrix: XGBoost, Train: Dataset-1, Test: Dataset-1, No VRS 

 
Figure 32 Confusion Matrix: XGBoost, Train: Dataset-1, Test: Dataset-1, VRS 
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Figure 33 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization 

 

 
Figure 34 Confusion Matrix: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS, Normalization 
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Figure 35 Hyperparameter  Graph: KNN, Train: Dataset-2, Test: Dataset-2, No VRS 
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Figure 36 Hyperparameter  Graph: KNN, Train: Dataset-2, Test: Dataset-2 VRS 
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Figure 37 Hyperparameter  Graph: KNN, Train: Dataset-2, Test: Dataset-1, No VRS 
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Figure 38 Hyperparameter  Graph: KNN, Train: Dataset-2, Test: Dataset-1, VRS 
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Figure 39 Hyperparameter  Graph: KNN, Train: Dataset-1, Test: Dataset-1, No VRS 
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Figure 40 Hyperparameter  Graph: KNN, Train: Dataset-1, Test: Dataset-1, VRS 
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Figure 41 Hyperparameter  Graph: RF, Train: Dataset-2, Test: Dataset-2, No VRS 
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Figure 42 Hyperparameter  Graph: RF, Train: Dataset-2, Test: Dataset-2, VRS 
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Figure 43 Hyperparameter  Graph: RF, Train: Dataset-2, Test: Dataset-1, No VRS 
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Figure 44 Hyperparameter  Graph: RF, Train: Dataset-2, Test: Dataset-1, VRS 

 



 61 

 
Figure 45 Hyperparameter  Graph: RF, Train: Dataset-1, Test: Dataset-1, No VRS 
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Figure 46 Hyperparameter  Graph: RF, Train: Dataset-1, Test: Dataset-1, VRS 
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Figure 47 Hyperparameter  Graph: RF, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization 
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Figure 48 Hyperparameter  Graph: RF, Train: Dataset-2, Test: Dataset-2, VRS, Normalization 
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Figure 49 Hyperparameter  Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS 
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Figure 50 Hyperparameter  Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS 
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Figure 51 Hyperparameter  Graph: XGBoost, Train: Dataset-2, Test: Dataset-1, No VRS 
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Figure 52 Hyperparameter  Graph: XGBoost, Train: Dataset-2, Test: Dataset-1, VRS 
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Figure 53 Hyperparameter  Graph: XGBoost, Train: Dataset-1, Test: Dataset-1, No VRS 
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Figure 54 Hyperparameter Graph: XGBoost, Train: Dataset-1, Test: Dataset-1, VRS 
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Figure 55 Hyperparameter  Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, No VRS, Normalization 
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Figure 56 Hyperparameter  Graph: XGBoost, Train: Dataset-2, Test: Dataset-2, VRS, Normalization 


